Skip to main content
Log in

Effect of Oxidative Stress on the Expression of Thin Filament-Associated Proteins in Gastric Smooth Muscle Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Thin filament-associated proteins such as calponin, caldesmon, and smoothelin are believed to regulate acto-myosin interaction and thus, muscle contraction. Oxidative stress has been found to affect the normal contractile behavior of smooth muscle and is involved in the pathogenesis of a number of human diseases such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the expression of smooth muscle contractile proteins. The aim of the current study is to investigate the effect of oxidative stress on the expression of thin filament-associated proteins in rat gastric smooth muscle. Single smooth muscle cells of the stomach obtained from Sprague–Dawley rats were used. Muscle cells were treated with hydrogen peroxide (H2O2) (500 μM) for 30 min or the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) (1 mM) for 90 min to induce oxidative stress. Calponin, caldesmon, and smoothelin expressions were measured via specifically designed enzyme-linked immunosorbent assay. We found that exposure to exogenous H2O2 or incubation of dispersed gastric muscle cells with SIN-1 significantly increased the expression of calponin, caldesmon, and smoothelin proteins. In conclusion: oxidative stress increases the expression of thin filament-associated proteins in gastric smooth muscle, suggesting an important role in gastrointestinal motility disorders associated with oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haeberle, J. R. (1999). Thin-filament linked regulation of smooth muscle myosin. Journal of Muscle Research and Cell Motility, 20, 363–370.

    Article  CAS  PubMed  Google Scholar 

  2. Morgan, K. G., & Gangopadhyay, S. S. (1985). Invited review: Cross-bridge regulation by thin filament-associated proteins. Journal of Applied Physiology, 2001(91), 953–962.

    Google Scholar 

  3. Murthy, K. S. (2006). Signaling for contraction and relaxation in smooth muscle of the gut. Annual Review of Physiology, 68, 345–374.

    Article  CAS  PubMed  Google Scholar 

  4. Kamata, K., & Kobayashi, T. (1996). Changes in superoxide dismutase mRNA expression by streptozotocin-induced diabetes. British Journal of Pharmacology, 119, 583–589.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Grunfeld, S., Hamilton, C. A., Mesaros, S., McClain, S. W., Dominiczak, A. F., Bohr, D. F., et al. (1995). Role of superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats. Hypertension, 26, 854–857.

    Article  CAS  PubMed  Google Scholar 

  6. Buttery, L. D., Springall, D. R., Chester, A. H., Evans, T. J., Standfield, E. N., Parums, D. V., et al. (1996). Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Laboratory Investigation, 75, 77–85.

    CAS  PubMed  Google Scholar 

  7. Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiological Reviews, 74, 139–162.

    CAS  PubMed  Google Scholar 

  8. Bayraktutan, U. (2002). Free radicals, diabetes and endothelial dysfunction. Diabetes, Obesity & Metabolism, 4, 224–238.

    Article  CAS  Google Scholar 

  9. Gryglewski, R. J., Palmer, R. M., & Moncada, S. (1986). Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature, 320, 454–456.

    Article  CAS  PubMed  Google Scholar 

  10. Keshavarzian, A., Sedghi, S., Kanofsky, J., List, T., Robinson, C., Ibrahim, C., et al. (1992). Excessive production of reactive oxygen metabolites by inflamed colon: Analysis by chemiluminescence probe. Gastroenterology, 103, 177–185.

    CAS  PubMed  Google Scholar 

  11. Parks, D. A., Bulkley, G. B., Granger, D. N., Hamilton, S. R., & McCord, J. M. (1982). Ischemic injury in the cat small intestine: Role of superoxide radicals. Gastroenterology, 82, 9–15.

    CAS  PubMed  Google Scholar 

  12. Farinati, F., Della Libera, G., Cardin, R., Molari, A., Plebani, M., Rugge, M., et al. (1996). Gastric antioxidant, nitrites, and mucosal lipoperoxidation in chronic gastritis and Helicobacter pylori infection. Journal of Clinical Gastroenterology, 22, 275–281.

    Article  CAS  PubMed  Google Scholar 

  13. Murthy, K. S., Coy, D. H., & Makhlouf, G. M. (1996). Somatostatin receptor-mediated signaling in smooth muscle. Activation of phospholipase C-beta3 by Gbetagamma and inhibition of adenylyl cyclase by Galphai1 and Galphao. Journal of Biological Chemistry, 271, 23458–23463.

    Article  CAS  PubMed  Google Scholar 

  14. Murthy, K. S., & Makhlouf, G. M. (1995). Functional characterization of phosphoinositide-specific phospholipase C-beta 1 and -beta 3 in intestinal smooth muscle. American Journal of Physiology, 269, C969–C978.

    CAS  PubMed  Google Scholar 

  15. Jin, J. P., Zhang, Z., & Bautista, J. A. (2008). Isoform diversity, regulation, and functional adaptation of troponin and calponin. Critical Reviews in Eukaryotic Gene Expression, 18, 93–124.

    Article  CAS  PubMed  Google Scholar 

  16. Sobue, K., Hayashi, K., & Nishida, W. (1999). Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Molecular and Cellular Biochemistry, 190, 105–118.

    Article  CAS  PubMed  Google Scholar 

  17. van der Loop, F. T., Gabbiani, G., Kohnen, G., Ramaekers, F. C., & van Eys, G. J. (1997). Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 665–671.

    Article  PubMed  Google Scholar 

  18. Niessen, P., Rensen, S., van Deursen, J., De Man, J., De Laet, A., Vanderwinden, J. M., et al. (2005). Smoothelin-A is essential for functional intestinal smooth muscle contractility in mice. Gastroenterology, 129, 1592–1601.

    Article  CAS  PubMed  Google Scholar 

  19. Kashyap, P., & Farrugia, G. (2010). Diabetic gastroparesis: What we have learned and had to unlearn in the past 5 years. Gut, 59, 1716–1726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. De Backer, O., Elinck, E., Blanckaert, B., Leybaert, L., Motterlini, R., & Lefebvre, R. A. (2009). Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut, 58, 347–356.

    Article  PubMed  Google Scholar 

  21. Choi, K. M., Gibbons, S. J., Nguyen, T. V., Stoltz, G. J., Lurken, M. S., Ordog, T., et al. (2008). Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology, 135, 2055–2064. 2064 e2051-2052.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pozo, M. J., Gomez-Pinilla, P. J., Camello-Almaraz, C., Martin-Cano, F. E., Pascua, P., Rol, M. A., et al. (2010). Melatonin, a potential therapeutic agent for smooth muscle-related pathological conditions and aging. Current Medicinal Chemistry, 17, 4150–4165.

    Article  CAS  PubMed  Google Scholar 

  23. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of USA, 87, 1620–1624.

    Article  CAS  Google Scholar 

  24. Daiber, A., Oelze, M., Coldewey, M., Kaiser, K., Huth, C., Schildknecht, S., et al. (2005). Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with congestive heart failure. Biochemical and Biophysical Research Communications, 338, 1865–1874.

    Article  CAS  PubMed  Google Scholar 

  25. Forstermann, U. (2010). Nitric oxide and oxidative stress in vascular disease. Pflugers Archiv, 459, 923–939.

    Article  PubMed  Google Scholar 

  26. Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87, 315–424.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Luoma, J. S., Stralin, P., Marklund, S. L., Hiltunen, T. P., Sarkioja, T., & Yla-Herttuala, S. (1998). Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 157–167.

    Article  CAS  PubMed  Google Scholar 

  28. Pennathur, S., Bergt, C., Shao, B., Byun, J., Kassim, S. Y., Singh, P., et al. (2004). Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. Journal of Biological Chemistry, 279, 42977–42983.

    Article  CAS  PubMed  Google Scholar 

  29. Szabo, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 6, 662–680.

    Article  CAS  PubMed  Google Scholar 

  30. Babu, G. J., Celia, G., Rhee, A. Y., Yamamura, H., Takahashi, K., Brozovich, F. V., et al. (2006). Effects of h1-calponin ablation on the contractile properties of bladder versus vascular smooth muscle in mice lacking SM-B myosin. Journal of Physiology, 577, 1033–1042.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Somara, S., & Bitar, K. N. (2006). Phosphorylated HSP27 modulates the association of phosphorylated caldesmon with tropomyosin in colonic smooth muscle. American Journal of Physiology, 291, G630–G639.

    CAS  PubMed  Google Scholar 

  32. Szpacenko, A., Wagner, J., Dabrowska, R., & Ruegg, J. C. (1985). Caldesmon-induced inhibition of ATPase activity of actomyosin and contraction of skinned fibres of chicken gizzard smooth muscle. FEBS Letters, 192, 9–12.

    Article  CAS  PubMed  Google Scholar 

  33. Changolkar, A. K., Hypolite, J. A., Disanto, M., Oates, P. J., Wein, A. J., & Chacko, S. (2005). Diabetes induced decrease in detrusor smooth muscle force is associated with oxidative stress and overactivity of aldose reductase. Journal of Urology, 173, 309–313.

    Article  CAS  PubMed  Google Scholar 

  34. Mannikarottu, A. S., Changolkar, A. K., Disanto, M. E., Wein, A. J., & Chacko, S. (2005). Over expression of smooth muscle thin filament associated proteins in the bladder wall of diabetics. Journal of Urology, 174, 360–364.

    Article  CAS  PubMed  Google Scholar 

  35. Mannikarottu, A. S., Disanto, M. E., Zderic, S. A., Wein, A. J., & Chacko, S. (2006). Altered expression of thin filament-associated proteins in hypertrophied urinary bladder smooth muscle. Neurourology and Urodynamics, 25, 78–88.

    Article  CAS  PubMed  Google Scholar 

  36. Chacko, S., Chang, S., Hypolite, J., Disanto, M., & Wein, A. (2004). Alteration of contractile and regulatory proteins following partial bladder outlet obstruction. Scandinavian Journal of Urology and Nephrology, 215, 26–36.

    Article  PubMed  Google Scholar 

  37. Su, B., Mitra, S., Gregg, H., Flavahan, S., Chotani, M. A., Clark, K. R., et al. (2001). Redox regulation of vascular smooth muscle cell differentiation. Circulation Research, 89, 39–46.

    Article  CAS  PubMed  Google Scholar 

  38. Rensen, S. S., Niessen, P. M., van Deursen, J. M., Janssen, B. J., Heijman, E., Hermeling, E., et al. (2008). Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice. Circulation, 118, 828–836.

    Article  PubMed  Google Scholar 

  39. Shi, X. Z., Lindholm, P. F., & Sarna, S. K. (2003). NF-kappa B activation by oxidative stress and inflammation suppresses contractility in colonic circular smooth muscle cells. Gastroenterology, 124, 1369–1380.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Jordan University of Science & Technology, Irbid, Jordan (Grant Number 93/2013).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othman Abdullah Al-Shboul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Shboul, O.A., Mustafa, A., Mohammad, M. et al. Effect of Oxidative Stress on the Expression of Thin Filament-Associated Proteins in Gastric Smooth Muscle Cells. Cell Biochem Biophys 70, 225–231 (2014). https://doi.org/10.1007/s12013-014-9886-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9886-7

Keywords

Navigation