Skip to main content

Advertisement

Log in

The Effect of EPO Gene Overexpression on Proliferation and Migration of Mouse Bone Marrow-Derived Mesenchymal Stem Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the effect of erythropoietin (EPO) gene overexpression on proliferation and migration of mouse bone marrow-derived mesenchymal stem cells (MSCs), and to determine the underlying signaling pathway. Mouse MSCs were cultured in vitro and EPO gene was transfected into the 6th generation of MSCs via lentivirus vector. The transfected cells were identified by flow cytometry and the EPO levels in supernatant were measured with ELISA. In addition, cell proliferation was assessed by CCK-8 assay and cell migration was evaluated by Transwell assay. The activation of Akt, ERK1/2, and p38MAPK signaling was detected by western blotting. The lentivirus vector containing EPO was successfully constructed and transfected into MSCs. No remarkable change was found in the cell surface markers after transfection while a significant increase of EPO level in supernatant was noticed in transfected MSCs compared to controls (P < 0.01). In addition, transfected MSCs showed a significantly enhanced proliferation (P < 0.01) as well as a notable increase in migration (P < 0.01) compared to controls. Furthermore, we also found that EPO modification enhanced the phosphorylation of PI3K/Akt and ERK signaling pathway, and suppressed the phosphorylation of p38MAPK without affecting the levels of total Akt, ERK1/2, and p38MAPK in MSCs. After transfection, MSCs secreted more EPO which enhanced the capability of proliferation and migration. Moreover, our results suggested that the enhanced proliferation and migration might be associated with activation of PI3K/Akt and ERK or inhibition of P38MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sanganalmath, S. K., & Bolli, R. (2013). Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circulation Research, 113(6), 810–834.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Chen, Y., Liu, W., Li, W., & Gao, C. (2010). Autologous bone marrow mesenchymal cell transplantation improves left ventricular function in a rabbit model of dilated cardiomyopathy. Experimental and Molecular Pathology, 88(2), 311–315.

    Article  CAS  PubMed  Google Scholar 

  3. Mu, Y., Cao, G., Zeng, Q., & Li, Y. (2011). Transplantation of induced bone marrow mesenchymal stem cells improves the cardiac function of rabbits with dilated cardiomyopathy via upregulation of vascular endothelial growth factor and its receptors. Experimental Biology and Medicine (Maywood)., 236(9), 1100–1107.

    Article  CAS  PubMed  Google Scholar 

  4. Yu, Q., Li, Q., Na, R., Li, X., Liu, B., Meng, L., et al. (2014). Impact of repeated intravenous bone marrow mesenchymal stem cells infusion on myocardial collagen network remodeling in a rat model of doxorubicin-induced dilated cardiomyopathy. Molecular and Cellular Biochemistry, 387(1–2), 279–285.

    Article  CAS  PubMed  Google Scholar 

  5. Müller-Ehmsen, J., Krausgrill, B., Burst, V., Schenk, K., Neisen, U. C., Fries, J. W., et al. (2006). Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. Journal of Molecular and Cellular Cardiology, 41, 876–884.

    Article  PubMed  Google Scholar 

  6. Westenbrink, B. D., Oeseburg, H., Kleijn, L., et al. (2008). Erythropoietin stimulates normal endothelial progenitor cell-mediated endothelial turnover, but attributes to neovascularization only in the presence of local ischemia. Cardiovascular Drugs and Therapy, 22(4), 265–274.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y., Cooke, M. J., Morshead, C. M., et al. (2012). Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials, 33(9), 2681–2692.

    Article  CAS  PubMed  Google Scholar 

  8. Sanchis-Gomar, F., Garcia-Gimenez, J. L., Pareja-Galeano, H., et al. (2014). Erythropoietin and the heart: physiological effects and the therapeutic perspective. International Journal of Cardiology, 71(2), 116–125.

    Article  Google Scholar 

  9. Chen, L., Qiu, R., & Xu, Q. (2014). Stem cell therapy for ischemic stroke. Journal of Nanoscience and Nanotechnology, 14(1), 976–982.

    Article  CAS  PubMed  Google Scholar 

  10. Gupta, N. K., Armstrong, E. J., & Parikh, S. A. (2014). The current state of stem cell therapy for peripheral artery disease. Current Cardiology Reports, 16(2), 447.

    Article  PubMed  Google Scholar 

  11. Fung, M. E., & Thébaud, B. (2014). Stem cell-based therapy for neonatal lung disease: it is in the juice. Pediatric Research, 75(1–1), 2–7.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Strauer, B. E., & Steinhoff, G. (2011). 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. Journal of the American College of Cardiology, 58(11), 1095–1104.

    Article  PubMed  Google Scholar 

  13. Caplan, A. I., & Correa, D. (2011). The MSC: An injury drugstore. Cell Stem Cell, 9, 11–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ortiz, L. A., Dutreil, M., Fattman, C., et al. (2007). Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences of the United States of America, 104, 11002–11007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sato, K., Ozaki, K., Oh, I., et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109, 228–234.

    Article  CAS  PubMed  Google Scholar 

  17. Xu, J., Qu, J., Cao, L., et al. (2008). Mesenchymal stem cell-based angiopoietin-1gene therapy for acute lung injury induced by lipopolysaccharide in mice. The Journal of Pathology, 214, 472–481.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, Z., Ou, L., Zhou, X., et al. (2008). Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Molecular Therapy, 16, 571–579.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, J., Sun, Z., Sun, H. S., et al. (2008). Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplantation, 16, 993–1005.

    Article  PubMed  Google Scholar 

  20. Parekkadan, B., & Milwid, J. M. (2010). Mesenchymal stem cells as therapeutics. Annual Review of Biomedical Engineering, 12, 87–117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Clifford, D.M., Fisher, S.A., Brunskill, S.J., et al. (2012). Stem cell treatment for acute myocardial infarction. Cochrane Database of Systematic Reviews, 2, CD006536.

  22. Zhang, Z., Li, S., Cui, M., et al. (2013). Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3 K/Akt and MEK/ERK pathways. Basic Research in Cardiology, 108(2), 333.

    Article  PubMed  Google Scholar 

  23. Hou, D., Youssef, E. A., Brinton, T. J., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation, 112(9 Suppl), I150–I156.

    PubMed  Google Scholar 

  24. Geroge, J., Goldstein, E., Abashidze, A., Wexler, D., Hamed, S., Shmilovich, H., et al. (2005). Erythropoietin promotes endothelial progenitor cell proliferative and adhesive properties in a PI3-kinase-dependent manner. Cardiovascular Research, 68, 299–306.

    Article  Google Scholar 

  25. Itoh, K., Sawasaki, Y., Takeuchi, K., Kato, S., Imai, N., Kato, Y., et al. (2006). Erythropoietin-induced proliferation of gastric mucosal cells. World Journal of Gastroenterology, 12, 234–239.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Hamadmad, S. N., Henry, M. K., & Hohl, R. J. (2006). Erythropoietin receptor signal transduction requires protein geranylgeranylation. Journal of Pharmacology and Experimental Therapeutics, 316, 403–409.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, N., Tian, J., Wang, W., et al. (2011). Effect and mechanism of erythropoietin on mesenchymal stem cell proliferation in vitro under the acute kidney injury microenvironment. Experimental Biology and Medicine (Maywood)., 236(9), 1093–1099.

    Article  CAS  PubMed  Google Scholar 

  28. Lois, C., Hong, E. J., Pease, S., et al. (2002). Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science, 295(5556), 868–872.

    Article  CAS  PubMed  Google Scholar 

  29. Kubo, S., Kataoka, M., Tateno, C., et al. (2010). In vivo stable transduction of humanized liver tissue in chimeric mice via high-capacity adenovirus-lentivirus hybrid vector. Human Gene Therapy, 21(1), 40–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cockrell, A. S., & Kafri, T. (2007). Gene delivery by lentivirus vectors. Molecular Biotechnology, 36(3), 184–204.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X., & McManus, M. (2009). Lentivirus production. Journal of Visualized Experiments, 10(32), 1499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Gong.

Additional information

Dr. Haihong Lin and Dr. Xinping Luo have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Luo, X., Jin, B. et al. The Effect of EPO Gene Overexpression on Proliferation and Migration of Mouse Bone Marrow-Derived Mesenchymal Stem Cells. Cell Biochem Biophys 71, 1365–1372 (2015). https://doi.org/10.1007/s12013-014-0358-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0358-x

Keywords

Navigation