Skip to main content

Advertisement

Log in

TGF-β1, Ghrelin, Neurexin, and Neuroligin are Predictive Biomarkers for Postoperative Prognosis of Laparoscopic Surgery in Children with Hirschsprung Disease

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The study was set to analyze the predictive values of transforming growth factor β1 (TGF-β1), Ghrelin, Neurexin, and Neuroligin protein expression on postoperative prognosis of laparoscopic surgery in children with Hirschsprung disease. 281 cases of children with Hirschsprung disease, admitted into Guangdong Women and Children Hospital and Guangzhou women and children’s medical center from March 2009 to March 2014, were treated with laparoscopic radical surgery for Hirschsprung disease. They were divided into the good and the poor prognosis groups according to their recuperation and complications. Protein expressions of TGF-β1, Ghrelin, Neurexin, and Neuroligin were prospectively analyzed. The correlations between the expressions of these proteins and the prognosis were analyzed. There were 129 cases of children with poor prognosis, accounting for 45.9 %. There were no significant differences in the expressions of TGF-β1 mRNA and proteins within the group in both the groups (p > 0.05). TGF-β1 mRNA and protein expressions of the poor prognosis group were significantly higher than those of the good prognosis group in each segment of intestine (p < 0.05). Protein detection results manifested that Ghrelin protein expression gradually increased along narrow segment, transitional segment, and expansion segment in both groups. Ghrelin protein expression of the poor prognosis group was significantly lower than that of the good prognosis group in each segment of intestine (p < 0.05). There were significant differences in the protein expressions of Neurexin and Neuroligin within the group. The protein expressions of Neurexin and Neuroligin in expansion segment were the highest. Neurexin and Neuroligin protein expressions of the poor prognosis group were significantly lower than those of the good prognosis group in each segment of intestine (p < 0.05). Increasing expression of TGF-β1 protein, decreasing expressions of Ghrelin, Neurexin, and Neuroligin proteins can induce the loss or dysfunction of ganglion cells in distal intestinal canal, which is closely correlated with the occurrences of adverse prognosis, such as increased intestinal peristalsis recovery time, increased complication rate etc., in children. It has a high value for predicting prognosis of children patients with Hirschsprung disease after surgical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang, S., Jiang, K., Yuan, Z., & Wang, W. (2014). The single nucleotide polymorphisms in Smad-interacting protein 1 gene contribute to its ectopic expression and susceptibility in Hirschsprung’s disease. Experimental and Molecular Pathology, 96(2), 219–224.

    Article  CAS  PubMed  Google Scholar 

  2. Trainor, P. A., & Merrill, A. E. (2014). Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochimica et Biophysica Acta, 1842(6), 769–778.

    Article  CAS  PubMed  Google Scholar 

  3. Thakker, R. V. (2014). Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Molecular and Cellular Endocrinology, 386(1–2), 2–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rogler, L. E., Kosmyna, B., Moskowitz, D., Bebawee, R., Rahimzadeh, J., Kutchko, K., et al. (2014). Small RNAs derived from lncRNARNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Human Molecular Genetics, 23(2), 368–382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nogueira-Paiva, N. C., Fonseca, K. D. S., Vieira, P. M., Diniz, L. F., Caldas, I. S., Moura, S. A., et al. (2014). Myenteric plexus is differentially affected by infection with distinct Trypanosomacruzi strains in Beagle dogs. Memorias do Instituto Oswaldo Cruz., 109(1), 51–60.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Muller, C. M., Haase, M. G., Kemnitz, I., & Fitze, G. (2014). Genetic mosaicism of a frameshift mutation in the RET gene in a family with Hirschsprung disease. Gene, 541(1), 51–54.

    Article  PubMed  Google Scholar 

  7. Kapur, R. P. (2014). Calretinin-immunoreactive mucosal innervation in very short-segment Hirschsprung disease: a potentially misleading observation. Pediatric and developmental pathology : The Official Journal of the Society for Pediatric Pathology and the Paediatric Pathology Society., 17(1), 28–35.

    Article  Google Scholar 

  8. Hartill, V. L., Pendlebury, M., & Hobson, E. (2014). Mowat-Wilson syndrome associated with craniosynostosis. Clinical Dysmorphology, 23(1), 16–19.

    Article  PubMed  Google Scholar 

  9. Gao, H., Liu, X., Chen, D., Lv, L., Wu, M., Mi, J., et al. (2014). Comparative study of Hsp27, GSK3beta, Wnt1 and PRDX3 in Hirschsprung’s disease. International Journal of Experimental Pathology, 95(3), 229–237.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, Z., Qin, J., Tang, J., Li, B., Geng, Q., Jiang, W., et al. (2013). Down-regulation of MeCP2 in Hirschsprung’s disease. Journal of Pediatric Surgery, 48(10), 2099–2105.

    Article  PubMed  Google Scholar 

  11. Zhang, Q., Wang, J., Li, A., Liu, H., Zhang, W., Cui, X., et al. (2013). Expression of neurexin and neuroligin in the enteric nervous system and their down-regulated expression levels in Hirschsprung disease. Molecular Biology Reports, 40(4), 2969–2975.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, W. I., & Oh, J. T. (2013). Calretinin and microtubule-associated protein-2 (MAP-2) immunohistochemistry in the diagnosis of Hirschsprung’s disease. Journal of Pediatric Surgery, 48(10), 2112–2117.

    Article  PubMed  Google Scholar 

  13. Yang, J., Duan, S., Zhong, R., Yin, J., Pu, J., Ke, J., et al. (2013). Exome sequencing identified NRG3 as a novel susceptible gene of Hirschsprung’s disease in a Chinese population. Molecular Neurobiology, 47(3), 957–966.

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe, Y., Broders-Bondon, F., Baral, V., Paul-Gilloteaux, P., Pingault, V., Dufour, S., et al. (2013). Sox10 and Itgb1 interaction in enteric neural crest cell migration. Developmental biology., 379(1), 92–106.

    Article  CAS  PubMed  Google Scholar 

  15. Volpe, A., Alaggio, R., Midrio, P., Iaria, L., & Gamba, P. (2013). Calretinin, beta-tubulin immunohistochemistry, and submucosal nerve trunks morphology in Hirschsprung disease: Possible applications in clinical practice. Journal of Pediatric Gastroenterology and Nutrition, 57(6), 780–787.

    Article  CAS  PubMed  Google Scholar 

  16. Virtanen, V. B., Pukkala, E., Kivisaari, R., Salo, P. P., Koivusalo, A., Arola, J., et al. (2013). Thyroid cancer and co-occurring RET mutations in Hirschsprung disease. Endocrine-Related Cancer, 20(4), 595–602.

    Article  CAS  PubMed  Google Scholar 

  17. Valera, E. T., Ferraz, S. T., Brassesco, M. S., Zhen, X., Shen, Y., dos Santos, A. C., et al. (2013). Mowat-Wilson syndrome: the first report of an association with central nervous system tumors. Child’s Nervous System :ChNS : Official Journal of the International Society for Pediatric Neurosurgery., 29(12), 2151–2155.

    Article  Google Scholar 

  18. Tang, W., Tang, J., Qin, J., Geng, Q., Zhou, Z., Li, B., et al. (2013). Involvement of down-regulated E2F3 in Hirschsprung’s disease. Journal of Pediatric Surgery, 48(4), 813–817.

    Article  PubMed  Google Scholar 

  19. Tang, W., Li, B., Tang, J., Liu, K., Qin, J., Wu, W., et al. (2013). Methylation analysis of EDNRB in human colon tissues of Hirschsprung’s disease. Pediatric Surgery International, 29(7), 683–688.

    Article  PubMed  Google Scholar 

  20. Spaggiari, E., Baumann, C., Alison, M., Oury, J. F., Belarbi, N., Dupont, C., et al. (2013). Mowat-Wilson syndrome in a fetus with antenatal diagnosis of short corpus callosum: advocacy for standard autopsy. European journal of medical genetics., 56(6), 297–300.

    Article  PubMed  Google Scholar 

  21. Sinagra, E., Orlando, A., Renna, S., Criscuoli, V., La Seta, F., Olivo, M., et al. (2013). Is really megacolon a contraindication to infliximab in Crohn’s disease? Acta gastro-enterologicaBelgica., 76(4), 442–444.

    Google Scholar 

  22. Shu, X., Meng, Q., Jin, H., Chen, J., Xiao, Y., Ji, J., et al. (2013). Treatment of aganglionic megacolon mice via neural stem cell transplantation. Molecular Neurobiology, 48(3), 429–437.

    Article  CAS  PubMed  Google Scholar 

  23. Reissmann, M., & Ludwig, A. (2013). Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals. Seminars in Cell & Developmental Biology, 24(6–7), 576–586.

    Article  CAS  Google Scholar 

  24. Qin, K. W., Shi, H., Zhang, L., Liu, P. F., Cai, W. L., Wu, K. H., et al. (2013). The research on screening differentially expressed genes in Hirschsprung’s disease by using Microarray. Journal of Pediatric Surgery, 48(11), 2281–2288.

    Article  PubMed  Google Scholar 

  25. Prim, N., Remacha, A., Sanchez-Reus, F., Brio, S., Ayats, R., & Munoz, C. (2013). Candidaemia detected on direct blood smears. European Journal of Haematology, 90(6), 536–537.

    Article  PubMed  Google Scholar 

  26. Park, J. Y., Cho, E. H., Lee, E. H., Kang, Y. S., Jun, K. R., & Hur, Y. J. (2013). Mowat-Wilson syndrome detected by using high resolution microarray. Gene, 532(2), 307–309.

    Article  CAS  PubMed  Google Scholar 

  27. Morris, M. I., Soglio, D. B., Ouimet, A., Aspirot, A., & Patey, N. (2013). A study of calretinin in Hirschsprung pathology, particularly in total colonic aganglionosis. Journal of Pediatric Surgery, 48(5), 1037–1043.

    Article  PubMed  Google Scholar 

  28. Moreira, M. D., Brehmer, A., de Oliveira, E. C., Neto, S. G., Luquetti, A. O., Bueno, L. L., et al. (2013). Regenerative process evaluation of neuronal subclasses in chagasic patients with megacolon. Human Immunology, 74(2), 181–188.

    Article  CAS  PubMed  Google Scholar 

  29. Miyahara, K., Kato, Y., Suzuki, R., Akazawa, C., Tanaka, N., Koga, H., et al. (2013). Anorectal neural crest derived cell behavior after the migration of vagal neural crest derived cells is surgically disrupted: implications for the etiology of Hirschsprung’s disease. Pediatric Surgery International, 29(1), 9–12.

    Article  PubMed  Google Scholar 

  30. Mihai, C., Prelipcean, C. C., Pintilie, I., Nedelciuc, O., Jigaranu, A. O., Dranga, M., et al. (2013). Nutrition in inflammatory bowel diseases. Revista Medico-Chirurgicala a Societatii de Medici si Naturalisti din Iasi., 117(3), 662–669.

    PubMed  Google Scholar 

  31. Micek, S. T., Schramm, G., Morrow, L., Frazee, E., Personett, H., Doherty, J. A., et al. (2013). Clostridium difficile infection: a multicenter study of epidemiology and outcomes in mechanically ventilated patients. Critical Care Medicine, 41(8), 1968–1975.

    Article  PubMed  Google Scholar 

  32. Menchise, A. N., Condino, A. A., Levitt, M. A., Hebra, A., & Wilsey, M. J. (2013). Celiac disease and diabetes mellitus diagnosed in a pediatric patient with Hirschsprung disease. Fetal and pediatric pathology., 31(1), 7–12.

    Article  PubMed  Google Scholar 

  33. Matera, I., Musso, M., Griseri, P., Rusmini, M., Di Duca, M., So, M. T., et al. (2013). Allele-specific expression at the RET locus in blood and gut tissue of individuals carrying risk alleles for Hirschsprung disease. Human Mutation, 34(5), 754–762.

    Article  CAS  PubMed  Google Scholar 

  34. Mahjoub, F. E., Zahedi, N., Ashjai, B., Ashtiani, M. T., Farahmand, F., Monajemzadeh, M., et al. (2013). Role of fecal calprotectin in differentiating between Hirschsprung’s disease and functional constipation. The Korean journal of gastroenterology, 62(5), 288–291.

    Article  PubMed  Google Scholar 

  35. Lucini, C., D’Angelo, L., de Girolamo, P., & Castaldo, L. (2013). RET receptor in the gut of developing cat. Research in Veterinary Science, 94(1), 1–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Huimin.

Additional information

Xiao Shangjie and Zhu Xiaochun are Co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangjie, X., Xiaochun, Z., Wenyi, Y. et al. TGF-β1, Ghrelin, Neurexin, and Neuroligin are Predictive Biomarkers for Postoperative Prognosis of Laparoscopic Surgery in Children with Hirschsprung Disease. Cell Biochem Biophys 71, 1249–1254 (2015). https://doi.org/10.1007/s12013-014-0338-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0338-1

Keywords

Navigation