Skip to main content

Advertisement

Log in

Hispidulin Potentiates the Antitumor Effect of Sunitinib Against Human Renal Cell Carcinoma in Laboratory Models

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The aim of the study was to evaluate the effect of the hispidulin, a naturally occurring flavonoid, in combination with a new multi-targeted oral medication, sunitinib on renal cell carcinoma (RCC) cell proliferation in vitro and on tumor growth in vivo. After treatment with hispidulin or sunitinib, either alone or in combination, MTT assay was used to examine cell viability and flow cytometry analysis was employed to examine cell cycle distribution and apoptosis of the RCC cell lines 786-0 and Caki-1. Western blotting was employed to examine the expression of proteins related to pStat3 signaling pathway. Furthermore, a xenograft mouse model was applied to study the antitumor efficacy of sunitinib or hispidulin alone or in combination, with immunohistochemistry to detect expression of proteins related to xenograft growth and angiogenesis. Hispidulin dose-dependently inhibited proliferation and induced apoptosis in both of the tested RCC cell lines when used alone; when combined with sunitinib, relatively low concentration of hispidulin enhanced the antitumor activity of the latter. The antitumor activity of hispidulin and its enhancement of the antitumor activity of sunitinib correlated with the suppression of pStat3 signaling and the consequent downregulation of Bcl-2 and survivin. Moreover, combination of hispidulin and sunitinib inhibited the growth and angiogenesis of xenografts generated from Caki-1 significantly. Immunohistochemistry indicated decreased expression of proteins promoting xenograft growth and angiogenesis after combination treatment of hispidulin and sunitinib. Our results showed that hispidulin, by inhibiting pStat3 signaling, exhibited antitumor activity and the joint use of hispidulin and sunitinib could provide greater antitumor efficacy compared to either drug alone. Therefore, combination treatment with hispidulin and sunitinib might offer a novel therapeutic option for patients with RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Antonelli, A., et al. (2007). The follow-up management of non-metastatic renal cell carcinoma: definition of a surveillance protocol. British Journal of Urology, 99(2), 296–300.

    Article  Google Scholar 

  2. Itsumi, M., & Tatsugami, K. (2010). Immunotherapy for renal cell carcinoma. Clinical and Developmental Immunology, 2010, 284581.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Reddy, K. (2006). Phase III study of sunitinib malate (SU11248) versus interferon-alpha as first-line treatment in patients with metastatic renal cell carcinoma. Clinical Genitourinary Cancer, 5(1), 23–25.

    Article  PubMed  Google Scholar 

  4. Faivre, S., et al. (2007). Molecular basis for sunitinib efficacy and future clinical development. Nature reviews. Drug discovery, 6(9), 734–745.

    Article  CAS  PubMed  Google Scholar 

  5. Faivre, S., et al. (2006). Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. Journal of Clinical Oncology, 24(1), 25–35.

    Article  CAS  PubMed  Google Scholar 

  6. Motzer, R. J., et al. (2006). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 24(1), 16–24.

    Article  CAS  PubMed  Google Scholar 

  7. Motzer, R. J., et al. (2009). Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 27(22), 3584–3590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Way, T. D., et al. (2010). Inhibition of epidermal growth factor receptor signaling by Saussurea involucrata, a rare traditional Chinese medicinal herb, in human hormone-resistant prostate cancer PC-3 cells. Journal of Agriculture and Food Chemistry, 58(6), 3356–3365.

    Article  CAS  Google Scholar 

  9. Yin, Y., et al. (2008). Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. Journal of Ethnopharmacology, 120(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  10. Kavvadias, D., et al. (2004). The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. British Journal of Pharmacology, 142(5), 811–820.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tan, R. X., et al. (1999). Mono- and sesquiterpenes and antifungal constituents from Artemisia species. Planta Medica, 65(1), 64–67.

    Article  CAS  PubMed  Google Scholar 

  12. Nagao, T., et al. (2002). Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biological and Pharmaceutical Bulletin, 25(7), 875–879.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y. T., et al. (1990). Flavonoids as superoxide scavengers and antioxidants. Free Radical Biology and Medicine, 9(1), 19–21.

    Article  PubMed  Google Scholar 

  14. Bourdillat, B., et al. (1988). Mechanism of action of hispidulin, a natural flavone, on human platelets. Progress in Clinical and Biological Research, 280, 211–214.

    CAS  PubMed  Google Scholar 

  15. Niu, X., et al. (2014). The Effects of Hispidulin on Bupivacaine-Induced Neurotoxicity: Role of AMPK Signaling Pathway. Cell Biochemistry and Biophysics,. doi:10.1007/s12013-014-9888-5.

    Google Scholar 

  16. Zhou, R., Wang, Z., & Ma, C. (2013). Hispidulin Exerts Anti-osteoporotic Activity in Ovariectomized Mice via Activating AMPK Signaling Pathway. Cell Biochemistry and Biophysics, 69(2), 311–317.

    Article  Google Scholar 

  17. Nepal, M., et al. (2013). Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-kappaB and NFATc1 pathways. European Journal of Pharmacology, 715(1–3), 96–104.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, J. M., et al. (2010). Hispidulin sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by AMPK activation leading to Mcl-1 block in translation. Journal of Agriculture and Food Chemistry, 58(18), 10020–10026.

    Article  CAS  Google Scholar 

  19. Lin, Y. C., et al. (2010). Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). Journal of Agriculture and Food Chemistry, 58(17), 9511–9517.

    Article  CAS  Google Scholar 

  20. He, L., et al. (2011). Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3 K/Akt/mTOR signaling pathway. Cancer Science, 102(1), 219–225.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, C. Y., et al. (2013). Potential Therapeutic Role of Hispidulin in Gastric Cancer through Induction of Apoptosis via NAG-1 Signaling. Evid Based Complement Alternat Med, 2013, 518301.

    PubMed Central  PubMed  Google Scholar 

  22. Gao, H., Wang, H., & Peng, J. (2014). Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of P13 k/Akt signalling pathway in HepG2 cancer cells. Cell Biochemistry and Biophysics, 69(1), 27–34.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, X. L., et al. (2012). Targeting renal cell carcinoma with gambogic acid in combination with sunitinib in vitro and in vivo. Asian Pacific Journal of Cancer Prevention, 13(12), 6463–6468.

    Article  PubMed  Google Scholar 

  24. Miyake, M., et al. (2012). 5-fluorouracil enhances the antitumor effect of sorafenib and sunitinib in a xenograft model of human renal cell carcinoma. Oncology Letters, 3(6), 1195–1202.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer, 9(11), 798–809.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, H., & Jove, R. (2004). The STATs of cancer–new molecular targets come of age. Nature Reviews Cancer, 4(2), 97–105.

    Article  CAS  PubMed  Google Scholar 

  27. Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Reviews Immunology, 7(1), 41–51.

    Article  CAS  PubMed  Google Scholar 

  28. Catlett-Falcone, R., et al. (1999). Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity, 10(1), 105–115.

    Article  CAS  PubMed  Google Scholar 

  29. Bollrath, J., et al. (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15(2), 91–102.

    Article  CAS  PubMed  Google Scholar 

  30. Grivennikov, S., et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15(2), 103–113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rebouissou, S., et al. (2009). Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature, 457(7226), 200–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Shang, D., et al. (2011). Interferon-alpha induces G1 cell-cycle arrest in renal cell carcinoma cells via activation of Jak-Stat signaling. Cancer Investigation, 29(5), 347–352.

    Article  CAS  PubMed  Google Scholar 

  33. El-Hashemite, N., & Kwiatkowski, D. J. (2005). Interferon-gamma-Jak-Stat signaling in pulmonary lymphangioleiomyomatosis and renal angiomyolipoma: a potential therapeutic target. American Journal of Respiratory Cell and Molecular Biology, 33(3), 227–230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Horiguchi, A., et al. (2010). STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. British Journal of Cancer, 102(11), 1592–1599.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Xin, H., et al. (2009). Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Research, 69(6), 2506–2513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Li, S., et al. (2013). Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS ONE, 8(12), e81657.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Banerjee, S., et al. (2009). Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Research, 69(13), 5575–5583.

    Article  CAS  PubMed  Google Scholar 

  38. Masuda, M., et al. (2002). Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Research, 62(12), 3351–3355.

    CAS  PubMed  Google Scholar 

  39. Leslie, K., et al. (2006). Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Research, 66(5), 2544–2552.

    Article  CAS  PubMed  Google Scholar 

  40. Sherr, C. J. (1994). G1 phase progression: cycling on cue. Cell, 79(4), 551–555.

    Article  CAS  PubMed  Google Scholar 

  41. Kitagawa, M., et al. (1996). The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO Journal, 15(24), 7060–7069.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation (No. 31470570) and funds from Qingdao University (No. 600201304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Peng or Chunbo Wang.

Additional information

Hui Gao and Qixiao Jiang are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Jiang, Q., Han, Y. et al. Hispidulin Potentiates the Antitumor Effect of Sunitinib Against Human Renal Cell Carcinoma in Laboratory Models. Cell Biochem Biophys 71, 757–764 (2015). https://doi.org/10.1007/s12013-014-0260-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0260-6

Keywords

Navigation