Skip to main content

Advertisement

Log in

miR-208-Induced Epithelial to Mesenchymal Transition of Pancreatic Cancer Cells Promotes Cell Metastasis and Invasion

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the role of miR-208 in the invasion and metastasis of pancreatic cancer cells and the underlying molecular mechanism. miR-208 mimic, miR-208 inhibitor and NC were transfected into pancreatic cancer cell line Bxpc3 using liposome. Transwell invasion and scratch assays were used to test cell migratory and invasive abilities. Western blotting and quantitative PCR methods were used to detect E-cadherin, fibronectin and vimentin protein and mRNA expression in pancreatic cancer cell line BxPC3 after transfection by miR-208 mimic, miR-208 inhibitor and NC. Transwell invasion and scratch assays showed that after overexpressing miR-208, pancreatic cancer cell line BxPC3 exhibited enhanced in vitro migratory and invasive abilities, while after downregulating miR-208 expression, cell migratory and invasive abilities were decreased. Western blotting and quantitative PCR showed that after overexpressing miR-208, expression of E-cadherin, an epithelial cell marker, was decreased and expression of fibronectin and vimentin, interstitial cell markers, was increased in pancreatic cancer cell line BxPC3; however, after inhibiting miR-208, increased E-cadherin expression and decreased fibronectin and vimentin expression were observed in pancreatic cancer cell line BxPC3. After overexpressing miR-208, p-AKT and p-GSK-3β expression was altered by activating AKT/GSK-3β/snail signaling pathway. miR-208 induces epithelial to mesenchymal transition of pancreatic cancer cell line BxPC3 by activating AKT/GSK-3β/snail signaling pathway and thereby promotes cell metastasis and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maitra, A., & Hruban, R. H. (2008). Pancreatic cancer. Annual Review of Pathology, 3, 157–188.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hidalgo, M. (2010). Pancreatic cancer. New England Journal of Medicine, 362(17), 1605–1617.

    Article  CAS  PubMed  Google Scholar 

  3. Cai, X., et al. (2006). Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathogens, 2(3), e23.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  5. Wu, L., Fan, J., & Belasco, J. G. (2006). MicroRNAs direct rapid deadenylation of mRNA. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4034–4039.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Llave, C., et al. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589), 2053–2056.

    Article  CAS  PubMed  Google Scholar 

  7. Cui, Q., et al. (2006). Principles of microRNA regulation of a human cellular signaling network. Molecular Biology Organization, 2, 46.

    Google Scholar 

  8. Calin, G. A., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences USA, 99(24), 15524–15529.

    Article  CAS  Google Scholar 

  9. Michael, M. Z., et al. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1(12), 882–891.

    CAS  PubMed  Google Scholar 

  10. Johnson, S. M., et al. (2005). RAS Is Regulated by the let-7 MicroRNA Family. Cell, 120(5), 635–647.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y., et al. (2011). Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. Journal of Hypertension, 29(8), 1560–1568.

    Article  CAS  PubMed  Google Scholar 

  12. Xin, M., Olson, E. N., & Bassel-Duby, R. (2013). Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nature Reviews Molecular Cell Biology, 14(8), 529–541.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Itoh, T., Takeda, S., & Akao, Y. (2010). MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. Journal of Biological Chemistry, 285(36), 27745–27752.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jin, J. C., et al. (2013). Effect of OSW-1 on microRNA expression profiles of hepatoma cells and functions of novel microRNAs. Molecular Medicine Reports, 7(6), 1831–1837.

    CAS  PubMed  Google Scholar 

  15. Meyer, T., & Hart, I. (1998). Mechanisms of tumour metastasis. European Journal of Cancer, 34(2), 8.

    Article  Google Scholar 

  16. Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80(8 Suppl), 1529–1537.

    Article  CAS  PubMed  Google Scholar 

  17. Horikawa, T., et al. (2011). Epstein-Barr Virus latent membrane protein 1 induces Snail and epithelial-mesenchymal transition in metastatic nasopharyngeal carcinoma. British Journal of Cancer, 104(7), 1160–1167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J. M., et al. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172(7), 973–981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cano, A., et al. (2000). The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83.

    Article  CAS  PubMed  Google Scholar 

  21. Nieto, M. A. (2002). The snail superfamily of zinc-finger transcription factors. Nature Reviews Molecular Cell Biology, 3(3), 155–166.

    Article  CAS  PubMed  Google Scholar 

  22. Eger, A., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast. Cancer cells, 24(14), 2375–2385.

    CAS  Google Scholar 

  23. Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial–mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 17(5), 548–558.

    Article  CAS  PubMed  Google Scholar 

  24. Perez-Moreno, M. A., et al. (2001). A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. Journal of Biological Chemistry, 276(29), 27424–27431.

    Article  CAS  PubMed  Google Scholar 

  25. Chang, F., et al. (2003). Involvement of PI3 K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 17(3), 590–603.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, Z. Q., et al. (2000). Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene, 19(19), 2324–2330.

    Article  CAS  PubMed  Google Scholar 

  27. Tanno, S., et al. (2001). AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Research, 61(2), 589–593.

    CAS  PubMed  Google Scholar 

  28. Grille, S. J., et al. (2003). The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Research, 63(9), 2172–2178.

    CAS  PubMed  Google Scholar 

  29. Lester, R. D., et al. (2007). uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. Journal of Cell Biology, 178(3), 425–436.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Julien, S., et al. (2007). Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene, 26(53), 7445–7456.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X., et al. (2007). NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell, 128(1), 129–139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Larue, L., & Bellacosa, A. (2005). Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/AKT pathways. Oncogene, 24(50), 7443–7454.

    Article  CAS  PubMed  Google Scholar 

  33. Muraoka, R. S., et al. (2002). Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. Journal of Clinical Investigation, 109(12), 1551–1559.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bakin, A. V., et al. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. Journal of Biological Chemistry, 275(47), 36803–36810.

    Article  CAS  PubMed  Google Scholar 

  35. Bachelder, R. E., et al. (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. Journal of Cell Biology, 168(1), 29–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhou, B. P., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nature Cell Biology, 6(10), 931–940.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, A., Shao, C., Jin, G. et al. miR-208-Induced Epithelial to Mesenchymal Transition of Pancreatic Cancer Cells Promotes Cell Metastasis and Invasion. Cell Biochem Biophys 69, 341–346 (2014). https://doi.org/10.1007/s12013-013-9805-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9805-3

Keywords

Navigation