Skip to main content

Advertisement

Log in

DNA Microarray and Quantitative Analysis Reveal Enhanced Myocardial VEGF Expression with Stunted Angiogenesis in Human Tetralogy of Fallot

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Tetralogy of Fallot (ToF) is a cyanotic congenital heart disease with prominent right ventricular hypertrophy (RVH) associated with impaired myocardial oxygen and nutrient supply. Consequently, the right ventricle may manifest in altered molecular phenotype with a number of adaptive and inherited gene profiles which are largely unknown. The aim of the present study was to investigate the myocardial differential gene expression profile and to assess myocardial vascularisation in patients with ToF. DNA microarray analysis on right ventricular biopsies from ToF-patients operated for primary corrective surgery (referred as ToF-1; n = 12, mean age 0.5 year) and age matched controls (n = 6) was validated by Northern hybridisation and RT-PCR. Employing immunohistochemistry and video image analysis expression of vascular endothelial growth factor (VEGF), vascular density (by α-SMA and CD31 staining) and myocyte cross sectional area (Gomori’s reticuline staining) were assessed in ToF-1 and adult patients (referred as ToF-2, n = 12, mean age 30 years) who underwent surgery for pulmonary regurgitation and compared the data with respective age matched controls (n = 6/12). DNA microarray analysis revealed altered expression pattern for 236 genes including enhanced (1.5–2.2-fold) expression of angiogenic factors and their receptors including; VEGF, flt-1, flk-1 angiopoietin-2, FGF-2, FGF-R1, PDGF-A, whereas, flt-4, Tie, TGF-β, TGF-β3R showed decreased (1.6–3.4-fold) expression in ToF-patients. Northern blot analysis verified the expression patterns of VEGF and flk-1 in both ToF-1 and ToF-2 patients. VEGF staining in cardiomyocytes was increased in ToF-1 (1.5-fold, p < 0.05) as compared to ToF-2. Video image analysis revealed enhanced vascular density (p < 0.01) with enlarged myocyte cross sectional area (p < 0.01), but vascular wall thickness remained unchanged in ToF-1 patients as compared to age matched controls. Our data suggest that RVH is associated with profound changes in gene profile for a number of genes, where VEGF/VEGF-R system contributes to enhance, but stunted myocardial angiogenesis in patients with ToF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peters, T. H. F., Klompe, L., Bogers, A. J. J. C., & Sharma, H. S. (2002). Molecular phenotype of the developing heart with a congenital anomaly. In B. Ostadal, M. Nagano, & N. S. Dhalla (Eds.), Cardiac development (pp. 197–212). Norwell, MA: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  2. Monaco, M., & Williams, I. (2012). Tetralogy of Fallot: Fetal diagnosis to surgical correction. Minerva Pediatrica, 64(5), 461–470.

    PubMed  CAS  Google Scholar 

  3. Peters, T. H. F., Sharma, H. S., Yilmaz, E., & Bogers, A. J. J. C. (1999). Quantitative analysis of collagens and fibronectin expression in human right ventricular hypertrophy. Annals of the New York Academy of Sciences, 874, 278–285.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang, H. S., Wu, Q. Y., Xu, M., Zhou, Y. X., & Shui, C. X. (2012). Mitogen-activated protein kinase signal pathways play an important role in right ventricular hypertrophy of tetralogy of Fallot. Chinese Medical Journal (English), 25(13), 2243–2249.

    Google Scholar 

  5. Putman, L. M., van Gameren, M., Meijboom, F. J., de Jong, P. L., Roos-Hesselink, J. W., Witsenburg, M., et al. (2009). Seventeen years of adult congenital heart surgery: a single centre experience. European Journal of Cardio-Thoracic Surgery, 36(1), 96–104.

    Article  PubMed  Google Scholar 

  6. van de Woestijne, P. C., Mokhles, M. M., de Jong, P. L., Witsenburg, M., Takkenberg, J. J., & Bogers, A. J. (2011). Right ventricular outflow tract reconstruction with an allograft conduit in patients after tetralogy of Fallot correction: Long-term follow-up. Annals of Thoracic Surgery, 92(1), 161–166.

    Article  PubMed  Google Scholar 

  7. van de Woestijne, P. C., Klompe, L., de Jong, P. L., Peters, T. H. F., Kappetein, A. P., Sharma, H. S., et al. (2004). Right ventricular fibrosis in different forms of pulmonary atresia and ventricular septal defect. Experimental & Clinical Cardiology, 9(3), 187–192.

    Google Scholar 

  8. Meijboom, F. J., Roos-Hesselink, J. W., McGhie, J. S., Spitaels, S. E., van Domburg, R. T., Utens, L. M., et al. (2008). Consequences of a selective approach toward pulmonary valve replacement in adult patients with tetralogy of Fallot and pulmonary regurgitation. Journal of Thoracic and Cardiovascular Surgery, 135(1), 50–55.

    Article  PubMed  Google Scholar 

  9. Boluyt, M. O., O’Neill, L., Meredith, A. L., Bing, O. H., Brooks, W. W., Conrad, C. H., et al. (1994). Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circulation Research, 75, 23–32.

    Article  PubMed  CAS  Google Scholar 

  10. Distefano, G., & Sciacca, P. (2012). Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure. Italian Journal of Pediatrics, 38, 41.

    Article  PubMed  Google Scholar 

  11. Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932–936.

    Article  PubMed  CAS  Google Scholar 

  12. Folkman, J. (1998). Angiogenic therapy of the human heart. Circulation, 97(7), 628–629.

    Article  PubMed  CAS  Google Scholar 

  13. Waltenberger, J., Mayr, U., Pentz, S., & Hombach, V. (1996). Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation, 94, 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  14. Deindl, E., & Schaper, W. (2005). The art of arteriogenesis. Cell Biochemistry and Biophysics, 43(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  15. Riley, P. R., & Smart, N. (2011). Vascularizing the heart. Cardiovascular Research, 91, 260–268.

    Article  PubMed  CAS  Google Scholar 

  16. Shweiki, D., Itin, A., Soffer, D., & Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359, 843–845.

    Article  PubMed  CAS  Google Scholar 

  17. Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine, 9(6), 677–684.

    Article  PubMed  CAS  Google Scholar 

  18. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407, 242–248.

    Article  PubMed  CAS  Google Scholar 

  19. Tomanek, R. J., Christensen, L. P., Simons, M., Murakami, M., Zheng, W., & Schatteman, G. C. (2010). Embryonic coronary vasculogenesis and angiogenesis are regulated by interactions between multiple FGFs and VEGF and are influenced by mesenchymal stem cells. Developmental Dynamics, 239(12), 3182–3191.

    Article  PubMed  CAS  Google Scholar 

  20. Tomanek, R. J., Sandra, A., Zheng, W., Brock, T., Bjercke, R. J., & Holifield, J. S. (2001). Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circulation Research, 88(11), 1135–1141.

    Article  PubMed  CAS  Google Scholar 

  21. Jason, A., Clayton, J. A., Chalothorn, D., & Faber, J. E. (2008). Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia. Circulation Research, 103, 1027–1036.

    Article  Google Scholar 

  22. Alagappan, V. K. T., McKay, S., Willems-Widyastuti, A., Garrelds, I. M., Bogers, A. J. J. C., Hoogsteden, H. C., et al. (2005). Pro-inflammatory cytokines up-regulate mRNA expression and secretion of vascular endothelial growth factor in cultured human airway smooth muscle cells. Cell Biochemistry and Biophysics, 43(1), 119–129.

    Article  PubMed  CAS  Google Scholar 

  23. Sharma, H. S., Tang, Z. H., Gho, B. C. H., & Verdouw, P. D. (1995). Nucleotide sequence and expression of the porcine vascular endothelial growth factor. Biochimica et Biophysica Acta, 1260, 235–238.

    Article  PubMed  Google Scholar 

  24. Tan, F. L., Moravec, C. S., Li, J., Apperson-Hansen, C., McCarthy, P. M., Young, J. B., et al. (2002). The gene expression fingerprint of human heart failure. Proceedings of the National Academy of Sciences of the United States of America, 99, 11387–11392.

    Article  PubMed  CAS  Google Scholar 

  25. Kaynak, B., von Heydebreck, A., Mebus, S., Seelow, D., Hennig, S., Vogel, J., et al. (2003). Genome-wide array analysis of normal and malformed human hearts. Circulation, 107(19), 2467–2474.

    Article  PubMed  Google Scholar 

  26. Pike-Overzet, K., de Ridder, D., Schonewille, T., & Staal, F. J. (2009). DNA microarray studies of hematopoietic subpopulations. Methods in Molecular Biology, 506, 403–421.

    Article  PubMed  CAS  Google Scholar 

  27. Sharma, H. S., Peters, T. H. F., Moorhouse, M. J., van der Spek, P. J., & Bogers, A. J. J. C. (2006). DNA microarray analysis for human congenital heart disease. Cell Biochemistry and Biophysics, 44, 1–10.

    Article  PubMed  CAS  Google Scholar 

  28. Bancroff, J. D., Cook, H. C., & Turner, B. (1994). Manual of histological techniques and their diagnostic application. London: Churchill Livingstone.

    Google Scholar 

  29. Kranenburg, A. R., de Boer, W. I., Alagappan, V. K. T., Sterk, P. J., & Sharma, H. S. (2005). Enhanced bronchial expression of vascular endothelial growth factor and receptors (flk-1 and flt-1) in patients with chronic obstructive pulmonary disease. Thorax, 60, 106–113.

    Article  PubMed  CAS  Google Scholar 

  30. Peters, T. H. F., Sharma, H. S., & Bogers, A. J. J. C. (2003). Computerized image analysis in the quantitative assessment of interstitial fibrosis late after correction of tetralogy of Fallot. Cardiovascular Engineering, 8, 114–120.

    Google Scholar 

  31. Shehata, S. M. K., Tibboel, D., Sharma, H. S., & Mooi, W. J. (1999). Impaired structural remodeling of pulmonary arteries in newborns with congenital diaphragmatic hernia: A histological study on 29 patients. Journal of Pathology, 189, 112–118.

    Article  PubMed  CAS  Google Scholar 

  32. Kranenburg, A. R., de Boer, W. I., van Krieken, J. H. J. M., Mooi, W. J., Walters, J. E., Saxena, P. R., et al. (2002). Enhanced expression of fibroblast growth factor-1 and receptor FGFR-1 during vascular remodeling in chronic obstructive pulmonary disease. American Journal of Respiratory Cell and Molecular Biology, 27, 517–525.

    Article  PubMed  CAS  Google Scholar 

  33. Murray, P. A., & Vatner, S. F. (1981). Reduction of maximal coronary vasodilator capacity in conscious dogs with severe right ventricular hypertrophy. Circulation Research, 48, 25–33.

    Article  PubMed  CAS  Google Scholar 

  34. Hultgren, P. B., & Bove, A. A. (1981). Myocardial blood flow and mechanics in volume overload-induced left ventricular hypertrophy in dogs. Cardiovascular Research, 15, 522–528.

    Article  PubMed  CAS  Google Scholar 

  35. Isoyama, S., Ito, N., Kuroha, M., & Takishima, T. (1989). Complete reversibility of physiological coronary vascular abnormalities in hypertrophied hearts produced by pressure overload in the rat. Journal of Clinical Investigation, 84, 288–294.

    Article  PubMed  CAS  Google Scholar 

  36. Toyota, E., Warltier, D. C., Brock, T., Ritman, E., Kolz, C., O’Malley, P., et al. (2005). Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation, 112(14), 2108–2113.

    Article  PubMed  CAS  Google Scholar 

  37. Ghorbel, M. T., Cherif, M., Jenkins, E., Mokhtari, A., Kenny, D., Angelini, G. D., et al. (2009). Transcriptomic analysis of patients with tetralogy of Fallot reveals the effect of chronic hypoxia on myocardial gene expression. Journal of Thoracic and Cardiovascular Surgery, 140(2), 337–345.

    Article  Google Scholar 

  38. Rakusan, K., Cicutti, N., Spatenka, J., & Samánek, M. (1997). Geometry of the capillary net in human hearts. International Journal of Microcirculation: Clinical and Experimental, 17, 29–32.

    Article  CAS  Google Scholar 

  39. Stalmans, I., Lambrechts, D., De Smet, F., Jansen, S., Wang, J., Maity, S., et al. (2003). VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nature Medicine, 9(2), 173–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Frank Staal and Michael Moorhouse for their help with the GeneChip data analysis. Financial support from the Netherlands Heart Foundation (NHS 96.082) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari S. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, T.H.F., Sharma, V., Yilmaz, E. et al. DNA Microarray and Quantitative Analysis Reveal Enhanced Myocardial VEGF Expression with Stunted Angiogenesis in Human Tetralogy of Fallot. Cell Biochem Biophys 67, 305–316 (2013). https://doi.org/10.1007/s12013-013-9710-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9710-9

Keywords

Navigation