Skip to main content
Log in

Phosphatidylethanolamine from Phosphatidylserine Decarboxylase2 is Essential for Autophagy Under Cadmium Stress in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a potent toxic element used in several industries and in the process contaminates air, soil, and water. Exposure of Saccharomyces cerevisiae to Cd increases the major phospholipids, and profound increase was observed in phosphatidylethanolamine (PE). In yeast, there are four different pathways contributing to the biosynthesis of PE, and contribution to PE pool through phosphatidylserine decarboxylase2 (psd2) is not significant in normal conditions. Upon Cd exposure, psd2Δ strain showed a significant decrease in major phospholipids including PE. When exposed to Cd, wild-type (WT) cells depicted an increase in ER stress and autophagy, whereas in psd2, ER stress was noted but autophagy process was impaired. The supplementation of ethanolamine did not overcome the Cd stress and also the autophagy process, whereas overexpression of PSD2 in psd2Δ increased the cellular tolerance, PE levels, and the autophagy process against Cd stress. From our studies, we can suggest that PSD2 of S. cerevisiae has an important role in PE synthesis and in autophagy process under Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klionsky, D. J. (2005). The molecular machinery of autophagy: Unanswered questions. Journal of Cell Science, 118, 7–18.

    Article  PubMed  CAS  Google Scholar 

  2. Yorimitsu, T., Nair, U., Yang, Z., & Klionsky, D. J. (2006). Endoplasmic reticulum stress triggers autophagy. Journal of Biological Chemistry, 281, 30299–30304.

    Article  PubMed  CAS  Google Scholar 

  3. Chrestensen, C. A., Starke, D. W., & Mieyal, J. J. (2000). Acute cadmium exposure inactivates thiol transferase (Glutaredoxin), inhibits intracellular reduction of protein glutathionyl mixed disulfides, and initiates apoptosis. Journal of Biological Chemistry, 275, 26556–26565.

    Article  PubMed  CAS  Google Scholar 

  4. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, 18, 321–336.

    Article  CAS  Google Scholar 

  5. Faller, P., Kienzler, K., & Krieger-Liszkay, A. (2005). Mechanism of Cd2+ toxicity: Cd2+ inhibits photo activation of Photosystem II by competitive binding to the essential Ca2+ site. Biochimica et Biophysica Acta, 1706, 158–164.

    Article  PubMed  CAS  Google Scholar 

  6. Nargund, A. M., Avery, S. V., & Houghton, J. E. (2008). Cadmium induces a heterogeneous and caspase dependent apoptotic response in Saccharomyces cerevisiae. Apoptosis, 13, 811–821.

    Article  PubMed  CAS  Google Scholar 

  7. Yokouchi, M., Hiramatsu, N., Hayakawa, K., Kasai, A., Takano, Y., Yao, J., et al. (2007). A typical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. Cell Death and Differentiation, 14, 1467–1474.

    Article  PubMed  CAS  Google Scholar 

  8. Biagioli, M., Pifferi, S., Ragghianti, M., Bucci, S., Rizzuto, R., & Pinton, P. (2008). Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium induced apoptosis. Cell Calcium, 43, 184–195.

    Article  PubMed  CAS  Google Scholar 

  9. Muthukumar, K., & Nachiappan, V. (2010). Cadmium-induced oxidative stress in Saccharomyces cerevisiae. Indian Journal of Biochemistry & Biophysics, 47, 383–387.

    CAS  Google Scholar 

  10. Howlett, N. G., & Avery, S. V. (1997). Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Applied and Environment Microbiology, 63, 2971–2976.

    CAS  Google Scholar 

  11. Girotti, W. (1985). Mechanisms of lipid peroxidation. Free Radical Biology & Medicine, 1, 87–95.

    Article  CAS  Google Scholar 

  12. Vance, J. E. (2008). Phosphatidylserine and phosphatidylethanolamine in mammalian cells: Two metabolically related amino phospholipids. Journal of Lipid Research, 49, 1377–1387.

    Article  PubMed  CAS  Google Scholar 

  13. Trotter, P. J., Pedretti, J., & Voelker, D. R. (1993). Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. Journal of Biological Chemistry, 268(28), 21416–21424.

    PubMed  CAS  Google Scholar 

  14. Trotter, P. J., & Voelker, D. R. (1995). Identification of a non-mitochondrial phosphatidylserine decarboxylase activity in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 270, 6062–6070.

    Article  PubMed  CAS  Google Scholar 

  15. Kennedy, E. P., & Weiss, S. B. (1956). The function of cytidine coenzymes in the biosynthesis of phospholipids. Journal of Biological Chemistry, 222, 193–214.

    PubMed  CAS  Google Scholar 

  16. Riekhof, W. R., Wu, J., Jones, J. L., & Voelker, D. R. (2007). Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 282, 28344–28352.

    Article  PubMed  CAS  Google Scholar 

  17. Gulshan, K., Shahi, P., & Scott Moye-Rowley, W. (2010). Compartment-specific synthesis of phosphatidylethanolamine is required for normal heavy metal resistance. Molecular Biology of the Cell, 21, 443–455.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshimori, T. (2004). Autophagy: A regulated bulk degradation process inside cells. Biochemical and Biophysical Research Communications, 313, 453–458.

    Article  PubMed  CAS  Google Scholar 

  19. Carman, G. M., & Han, G. S. (2009). Regulation of phospholipid biosynthesis in yeast. Journal of Lipid Research, 50, 69–73.

    Article  Google Scholar 

  20. Iwanyshyn, W. M., Han, G. S., & Carman, G. M. (2004). Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc. Journal of Biological Chemistry, 279, 21976–21983.

    Article  PubMed  CAS  Google Scholar 

  21. Ghosh, A. K., Ramakrishnan, G., & Rajasekharan, R. (2008). YLR099C (ICT1) encodes a soluble acyl CoA dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. Journal of Biological Chemistry, 283, 9768–9775.

    Article  PubMed  CAS  Google Scholar 

  22. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  PubMed  CAS  Google Scholar 

  23. Wagner, S., & Paltauf, F. (1994). Generation of glycerophospholipid molecular species in the yeast Saccharomyces cerevisiae. Fatty acid pattern of phospholipid classes and selective acyl turnover at sn-1 and sn-2 positions. Yeast, 10, 1429–1437.

    Article  PubMed  CAS  Google Scholar 

  24. Siakotos, A. N., Rouser, G., & Fleischer, S. (1966). Phospholipid composition of human, bovine and frog myelin isolated on a large scale from brain and spinal cord. Lipids, 1, 85–86.

    Article  PubMed  Google Scholar 

  25. Gietz, R. D., & Schiestl, R. H. (1995). Transforming Yeast with DNA. Methods in Molecular and Cellular Biology, 5, 255–269.

    Google Scholar 

  26. Kirisako, T., Ichimura, Y., Okada, H., Kabeya, Y., Mizushima, N., Yoshimori, T., et al. (2000). The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. Journal of Cell Biology, 151, 263–276.

    Article  PubMed  CAS  Google Scholar 

  27. Yen, W. L., Legakis, J. E., Nair, U., & Klionsky, D. J. (2007). Atg27 is required for autophagy dependent cycling of Atg9. Molecular Biology of the Cell, 18, 581–593.

    Article  PubMed  CAS  Google Scholar 

  28. Normington, K., Kohno, K., Kozutsumi, Y., Gething, M. J., & Sambrook, J. (1989). S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell, 57, 1223–1236.

    Article  PubMed  CAS  Google Scholar 

  29. Nebauer, R., Rosenberger, S., & Daum, G. (2007). Phosphatidylethanolamine, a limiting factor of autophagy in yeast strains bearing a defect in the carboxypeptidase Y pathway of vacuolar targeting. Journal of Biological Chemistry, 282, 16736–16743.

    Article  PubMed  CAS  Google Scholar 

  30. Storey, M. K., Clay, K. L., Kutateladze, T., Murphy, R. C., Overduin, M., & Voelker, D. R. (2001). Phosphatidylethanolamine has an essential role in Saccharomyces cerevisiae that is independent of its ability to form hexagonal phase structures. Journal of Biological Chemistry, 276, 48539–48548.

    PubMed  CAS  Google Scholar 

  31. Muthukumar, K., Rajakumar, S., Sarkar, M. N., & Nachiappan, V. (2011). Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie van Leeuwenhoek, 99, 761–771.

    Article  PubMed  CAS  Google Scholar 

  32. Vijayaraj, P., Sabarirajan, J., & Nachiappan, V. (2011). Enhanced phospholipase B activity and alteration of phospholipids and neutral lipids in Saccharomyces cerevisiae exposed to N nitrosonornicotine. Antonie van Leeuwenhoek, 99, 567–577.

    Article  PubMed  CAS  Google Scholar 

  33. Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology, 8, 519–529.

    Article  PubMed  CAS  Google Scholar 

  34. Schuck, S., Prinz, W. A., Thorn, K. S., Voss, C., & Walter, P. (2009). Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. Journal of Cell Biology, 187, 525–536.

    Article  PubMed  CAS  Google Scholar 

  35. Miura, S., Zou, W., Ueda, M., & Tanaka, A. (2000). Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display. Applied and Environment Microbiology, 66, 4883–4889.

    Article  CAS  Google Scholar 

  36. Luo, J., Matsuo, Y., Gulis, G., Hinz, H., Patton-Vogt, J., & Marcus, S. (2009). Phosphatidylethanolamine is required for normal cell morphology and cytokinesis in the fission yeast Schizosaccharomyces pombe. Eukaryotic Cell, 8, 790–799.

    Article  PubMed  CAS  Google Scholar 

  37. Bogdanov, M., Umeda, M., & Dowhan, W. (1999). Phospholipid-assisted refolding of an integral membrane protein. Minimum structural features for phosphatidylethanolamine to act as a molecular chaperone. Journal of Biological Chemistry, 274, 12339–12345.

    Article  PubMed  CAS  Google Scholar 

  38. Opekarova, M., Robl, I., & Tanner, W. (2002). Phosphatidylethanolamine is essential for targeting the arginine transporter Can1p to the plasma membrane of yeast. Biochimica et Biophysica Acta, 1564, 9–13.

    Article  PubMed  CAS  Google Scholar 

  39. Birner, R., Nebauer, R., Schneiter, R., & Daum, G. (2003). Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine biosynthetic machinery with the prohibitin complex of Saccharomyces cerevisiae. Molecular Biology of the Cell, 14, 370–383.

    Article  PubMed  CAS  Google Scholar 

  40. Gardarin, A., Chédin, S., Lagniel, G., Aude, J. C., Godat, E., Catty, P., et al. (2010). Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Molecular Microbiology, 76, 1034–1048.

    Article  PubMed  CAS  Google Scholar 

  41. Cox, J. S., Shamu, C. E., & Walter, P. (1993). Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 73, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  42. Mori, K., Ma, W., Gething, M. J., & Sambrook, J. (1993). A transmembrane protein with a cdc2/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell, 74, 743–756.

    Article  PubMed  CAS  Google Scholar 

  43. Kimata, Y., Kimata, Y. I., Shimizu, Y., Abe, H., Farcasanu, I. C., Takeuchi, M., et al. (2003). Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Molecular Biology of the Cell, 14, 2559–2569.

    Article  PubMed  CAS  Google Scholar 

  44. Fagone, P., & Jackowski, S. (2009). Membrane phospholipid synthesis and endoplasmic reticulum function. Journal of Lipid Research, Suppl, S311–S316.

    Google Scholar 

  45. Xie, Z., Nair, U., & Klionsky, D. J. (2008). Atg8 controls phagophore expansion during autophagosome formation. Molecular Biology of the Cell, 19, 3290–3298.

    Article  PubMed  CAS  Google Scholar 

  46. Nakatogawa, H., Ichimura, Y., & Ohsumi, Y. (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 130, 165–178.

    Article  PubMed  CAS  Google Scholar 

  47. Klionsky, D. J., Cueva, R., & Yaver, D. S. (1992). Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. Journal of Cell Biology, 119, 287–299.

    Article  PubMed  CAS  Google Scholar 

  48. Nakatogawa, H., Ohbayashi, S., Nakatogawa, M. S., Kakuta, S., Suzuki, S. W., Kirisako, H., et al. (2012). The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. Journal of Biological Chemistry, 287, 28503–28507.

    Article  PubMed  CAS  Google Scholar 

  49. Tsukada, M., & Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters, 333, 169–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Bharathidasan University, Tiruchirappalli, Council of Scientific & Industrial Research—CSIR, India and instrumentation facility provided by Department of Science & Technology—DST under DST-PURSE programme are gratefully acknowledged. The authors also thank Prof. Dennis Voelker (National Jewish Health, Denver, CO, USA) for providing the YEp352-PSD2 plasmids, Prof. Gunther Daum, (Graz University, Austria) for providing mutant strains for this work, Prof. Daniel J. Klionsky (University of Michigan, Michigan, USA), Prof. Yoshinori Ohsumi, Prof. Kuninori Suzuki (Tokyo Institute of Technology, Yokohama, Japan), Prof. Jeffrey Brodsky (University of Pittsburgh, PA, USA), and Prof. Marco Foiani, (University of Milan, Italy) for providing Ape1, Atg8, kar2, and pgk1 antiserum, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanthi Nachiappan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthukumar, K., Nachiappan, V. Phosphatidylethanolamine from Phosphatidylserine Decarboxylase2 is Essential for Autophagy Under Cadmium Stress in Saccharomyces cerevisiae . Cell Biochem Biophys 67, 1353–1363 (2013). https://doi.org/10.1007/s12013-013-9667-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9667-8

Keywords

Navigation