Skip to main content
Log in

Neuronal Ubiquitin Homeostasis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating the synaptic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yi, J. J., & Ehlers, M. D. (2007). Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacological Reviews, 59, 14–39.

    Article  PubMed  CAS  Google Scholar 

  2. DiAntonio, A., Haghighi, A. P., Portman, S. L., Lee, J. D., Amaranto, A. M., et al. (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature, 412, 449–452.

    Article  PubMed  CAS  Google Scholar 

  3. Ding, M., Chao, D., Wang, G., & Shen, K. (2007). Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination. Science, 317, 947–951.

    Article  PubMed  CAS  Google Scholar 

  4. Burbea, M., Dreier, L., Dittman, J. S., Grunwald, M. E., & Kaplan, J. M. (2002). Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C-elegans. Neuron, 35, 107–120.

    Article  PubMed  CAS  Google Scholar 

  5. Colledge, M., Snyder, E. M., Crozier, R. A., Soderling, J. A., Jin, Y., et al. (2003). Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron, 40, 595–607.

    Article  PubMed  CAS  Google Scholar 

  6. Bizzi, A., Schaetzle, B., Patton, A., Gambetti, P., & Autilio-Gambetti, L. (1991). Axonal transport of two major components of the ubiquitin system: free ubiquitin and ubiquitin carboxyl-terminal hydrolase PGP 9.5. Brain Research, 548, 292–299.

    Article  PubMed  CAS  Google Scholar 

  7. Goldstein, G., Scheid, M., Hammerling, U., Schlesinger, D. H., Niall, H. D., et al. (1975). Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proceedings of the National Academy of Sciences of the United States of America, 72, 11–15.

    Article  PubMed  CAS  Google Scholar 

  8. Wilkinson, K. D., Urban, M. K., & Haas, A. L. (1980). Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. Journal of Biological Chemistry, 255, 7529–7532.

    PubMed  CAS  Google Scholar 

  9. Hershko, A., Eytan, E., Ciechanover, A., & Haas, A. L. (1982). Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. Journal of Biological Chemistry, 257, 13964–13970.

    PubMed  CAS  Google Scholar 

  10. Ciehanover, A., Hod, Y., & Hershko, A. (1978). A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochemical and Biophysical Research Communications, 81, 1100–1105.

    Article  PubMed  CAS  Google Scholar 

  11. Kaiser, S. E., Riley, B. E., Shaler, T. A., Trevino, R. S., Becker, C. H., et al. (2011). Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nature Methods, 8, 691–696.

    Article  PubMed  CAS  Google Scholar 

  12. Fornace, A. J, Jr, Alamo, I, Jr, Hollander, M. C., & Lamoreaux, E. (1989). Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Research, 17, 1215–1230.

    Article  PubMed  CAS  Google Scholar 

  13. Bond, U., & Schlesinger, M. J. (1986). The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells. Molecular and Cellular Biology, 6, 4602–4610.

    PubMed  CAS  Google Scholar 

  14. Wilkinson, K. D., Tashayev, V. L., O’Connor, L. B., Larsen, C. N., Kasperek, E., et al. (1995). Metabolism of the polyubiquitin degradation signal: Structure, mechanism, and role of isopeptidase T. Biochemistry, 34, 14535–14546.

    Article  PubMed  CAS  Google Scholar 

  15. Ryu, K. Y., Garza, J. C., Lu, X. Y., Barsh, G. S., & Kopito, R. R. (2008). Hypothalamic neurodegeneration and adult-onset obesity in mice lacking the Ubb polyubiquitin gene. Proceedings of the National Academy of Sciences of the United States of America, 105, 4016–4021.

    Article  PubMed  CAS  Google Scholar 

  16. Ryu, K. Y., Maehr, R., Gilchrist, C. A., Long, M. A., Bouley, D. M., et al. (2007). The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO Journal, 26, 2693–2706.

    Article  PubMed  CAS  Google Scholar 

  17. Ryu, K. Y., Sinnar, S. A., Reinholdt, L. G., Vaccari, S., Hall, S., et al. (2008). The mouse polyubiquitin gene Ubb is essential for meiotic progression. Molecular and Cellular Biology, 28, 1136–1146.

    Article  PubMed  CAS  Google Scholar 

  18. Ryu, K. Y., Park, H., Rossi, D. J., Weissman, I. L., & Kopito, R. R. (2012). Perturbation of the hematopoietic system during embryonic liver development due to disruption of polyubiquitin gene Ubc in mice. PLoS ONE, 7, e32956.

    Article  PubMed  CAS  Google Scholar 

  19. Haas, A. L., Warms, J. V., Hershko, A., & Rose, I. A. (1982). Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. Journal of Biological Chemistry, 257, 2543–2548.

    PubMed  CAS  Google Scholar 

  20. Hershko, A., Heller, H., Elias, S., & Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. Journal of Biological Chemistry, 258, 8206–8214.

    PubMed  CAS  Google Scholar 

  21. Pickart, C. M., & Rose, I. A. (1985). Functional heterogeneity of ubiquitin carrier proteins. Journal of Biological Chemistry, 260, 1573–1581.

    PubMed  CAS  Google Scholar 

  22. Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A., & Kuhlman, B. (2005). E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nature Structural & Molecular Biology, 12, 933–934.

    Article  CAS  Google Scholar 

  23. Clague, M. J., Liu, H., & Urbe, S. (2012). Governance of endocytic trafficking and signaling by reversible ubiquitylation. Developmental Cell, 23, 457–467.

    Article  PubMed  CAS  Google Scholar 

  24. Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., et al. (1989). A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science, 243, 1576–1583.

    Article  PubMed  CAS  Google Scholar 

  25. Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., et al. (1994). Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Molecular and Cellular Biology, 14, 5501–5509.

    PubMed  CAS  Google Scholar 

  26. Thrower, J. S., Hoffman, L., Rechsteiner, M., & Pickart, C. M. (2000). Recognition of the polyubiquitin proteolytic signal. EMBO Journal, 19, 94–102.

    Article  PubMed  CAS  Google Scholar 

  27. Abbott, D. W., Yang, Y., Hutti, J. E., Madhavarapu, S., Kelliher, M. A., et al. (2007). Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Molecular and Cellular Biology, 27, 6012–6025.

    Article  PubMed  CAS  Google Scholar 

  28. Chan, N. L., & Hill, C. P. (2001). Defining polyubiquitin chain topology. Natural Structural Biology, 8, 650–652.

    Article  CAS  Google Scholar 

  29. Reggiori, F., & Pelham, H. R. B. (2001). Sorting of proteins into multivesicular bodies: Ubiquitin-dependent and -independent targeting. EMBO Journal, 20, 5176–5186.

    Article  PubMed  CAS  Google Scholar 

  30. Sigismund, S., Woelk, T., Puri, C., Maspero, E., Tacchetti, C., et al. (2005). Clathrin-independent endocytosis of ubiquitinated cargos. Proceedings of the National Academy of Sciences of the United States of America, 102, 2760–2765.

    Article  PubMed  CAS  Google Scholar 

  31. Kravtsova-Ivantsiv, Y., & Ciechanover, A. (2012). Non-canonical ubiquitin-based signals for proteasomal degradation. Journal of Cell Science, 125, 539–548.

    Article  PubMed  CAS  Google Scholar 

  32. Bence, N. F., Sampat, R. M., & Kopito, R. R. (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  33. Upadhya, S. C., & Hegde, A. N. (2007). Role of the ubiquitin proteasome system in Alzheimer’s disease. BMC Biochemistry, 8(Suppl 1), S12.

    Article  PubMed  Google Scholar 

  34. Dawson, T. M., & Dawson, V. L. (2003). Molecular pathways of neurodegeneration in Parkinson’s disease. Science, 302, 819–822.

    Article  PubMed  CAS  Google Scholar 

  35. Osaka, H., Wang, Y. L., Takada, K., Takizawa, S., Setsuie, R., et al. (2003). Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 12, 1945–1958.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson, C., Crimmins, S., Wilson, J. A., Korbel, G. A., Ploegh, H. L., et al. (2005). Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. Journal of Neurochemistry, 95, 724–731.

    Article  PubMed  CAS  Google Scholar 

  37. Shabek, N., & Ciechanover, A. (2010). Degradation of ubiquitin: The fate of the cellular reaper. Cell Cycle, 9, 523–530.

    Article  PubMed  CAS  Google Scholar 

  38. Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., et al. (1998). The ubiquitin pathway in Parkinson’s disease. Nature, 395, 451–452.

    Article  PubMed  CAS  Google Scholar 

  39. Saigoh, K., Wang, Y. L., Suh, J. G., Yamanishi, T., Sakai, Y., et al. (1999). Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genetics, 23, 47–51.

    PubMed  CAS  Google Scholar 

  40. Ehlers, M. D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neuroscience, 6, 231–242.

    Article  PubMed  CAS  Google Scholar 

  41. Sakurai, M., Sekiguchi, M., Zushida, K., Yamada, K., Nagamine, S., et al. (2008). Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin C-terminal hydrolase L1 gene. European Journal of Neuroscience, 27, 691–701.

    Article  PubMed  Google Scholar 

  42. Cartier, A. E., Djakovic, S. N., Salehi, A., Wilson, S. M., Masliah, E., et al. (2009). Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. Journal of Neuroscience, 29, 7857–7868.

    Article  PubMed  CAS  Google Scholar 

  43. Borodovsky, A., Kessler, B. M., Casagrande, R., Overkleeft, H. S., Wilkinson, K. D., et al. (2001). A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO Journal, 20, 5187–5196.

    Article  PubMed  CAS  Google Scholar 

  44. Hu, M., Li, P., Song, L., Jeffrey, P. D., Chenova, T. A., et al. (2005). Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO Journal, 24, 3747–3756.

    Article  PubMed  CAS  Google Scholar 

  45. Lee, B. H., Lee, M. J., Park, S., Oh, D. C., Elsasser, S., et al. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 467, 179–184.

    Article  PubMed  CAS  Google Scholar 

  46. Wilson, S. M., Bhattacharyya, B., Rachel, R. A., Coppola, V., Tessarollo, L., et al. (2002). Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nature Genetics, 32, 420–425.

    Article  PubMed  CAS  Google Scholar 

  47. Chen, P. C., Qin, L. N., Li, X. M., Walters, B. J., Wilson, J. A., et al. (2009). The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. Journal of Neuroscience, 29, 10909–10919.

    Article  PubMed  CAS  Google Scholar 

  48. Crimmins, S., Jin, Y., Wheeler, C., Huffman, A. K., Chapman, C., et al. (2006). Transgenic rescue of ataxia mice with neuronal-specific expression of ubiquitin-specific protease 14. Journal of Neuroscience, 26, 11423–11431.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, P. C., Bhattacharyya, B. J., Hanna, J., Minkel, H., Wilson, J. A., et al. (2011). Ubiquitin homeostasis is critical for synaptic development and function. Journal of Neuroscience, 31, 17505–17513.

    Article  PubMed  CAS  Google Scholar 

  50. Hanna, J., Meides, A., Zhang, D. P., & Finley, D. (2007). A ubiquitin stress response induces altered proteasome composition. Cell, 129, 747–759.

    Article  PubMed  CAS  Google Scholar 

  51. Bingol, B., & Sheng, M. (2011). Deconstruction for reconstruction: The role of proteolysis in neural plasticity and disease. Neuron, 69, 22–32.

    Article  PubMed  CAS  Google Scholar 

  52. Chen, H., Polo, S., Di Fiore, P. P., & De Camilli, P. V. (2003). Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proceedings of the National Academy of Sciences of the United States of America, 100, 14908–14913.

    Article  PubMed  CAS  Google Scholar 

  53. Rinetti, G. V., & Schweizer, F. E. (2010). Ubiquitination acutely regulates presynaptic neurotransmitter release in mammalian neurons. Journal of Neuroscience, 30, 3157–3166.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Evelyn F. McKnight Brain Institute, NIH/NINDS Grants NS047533 and NS074456 (S.M.W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallengren, J., Chen, PC. & Wilson, S.M. Neuronal Ubiquitin Homeostasis. Cell Biochem Biophys 67, 67–73 (2013). https://doi.org/10.1007/s12013-013-9634-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9634-4

Keywords

Navigation