Skip to main content
Log in

Biochemical and Structural Characterization of the Ubiquitin-Conjugating Enzyme UBE2W Reveals the Formation of a Noncovalent Homodimer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The biochemical and structural characterization of ubiquitin-conjugating enzymes (E2s) over the past 30 years has fostered important insights into ubiquitin transfer mechanisms. Although many of these enzymes share high sequence and structural conservation, their functional roles in the cell are decidedly diverse. Here, we report that the mono-ubiquitinating E2 UBE2W forms a homodimer using two distinct protein surfaces. Dimerization is primarily driven by residues in the ß-sheet region and Loops 4 and 7 of the catalytic domain. Mutation of two residues in the catalytic domain of UBE2W is capable of disrupting UBE2W homodimer formation, however, we find that dimerization of this E2 is not required for its ubiquitin transfer activity. In addition, residues in the C-terminal region, although not compulsory for the dimerization of UBE2W, play an ancillary role in the dimer interface. In all current E2 structures, the C-terminal helix of the UBC domain is at least 15Å away from the primary dimerization surface shown here for UBE2W. This leads to the proposal that the C-terminal region of UBE2W adopts a noncanonical position that places it closer to the UBC ß-sheet, providing the first indication that at least some E2s adopt C-terminal conformations different from the canonical structures observed to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. E2s are organized into classes: Class I E2s contain only the ~150-residue catalytic domain (“UBC” domain); Class II, III, and IV E2s also contain N-terminal, C-terminal extension, or both. Currently, little is known regarding the function of such extensions and there is little structural information available on any extensions. All available E2 structures, regardless of the class they belong to, are of the UBC domain.

  2. Of the ~120 resonances in the UBE2W-‘KK’ 1H, 15N-HSQC spectrum, we were able to unambiguously assign 115. From this dataset, we were able to transfer assignments to the ‘WT’ spectrum and identify 80 of the ~90 resonances present.

References

  1. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 2001(70), 195–201.

    Google Scholar 

  2. Ye, Y., & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 10, 755–764.

    Article  PubMed  CAS  Google Scholar 

  3. Christensen, D. E., Brzovic, P. S., & Klevit, R. E. (2007). E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nature Structural and Molecular Biology, 14, 941–948.

    Article  PubMed  CAS  Google Scholar 

  4. Rodrigo-Brenni, M. C., Foster, S. A., & Morgan, D. O. (2010). Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. Molecular Cell, 39, 548–559.

    Article  PubMed  CAS  Google Scholar 

  5. Alpi, A. F., Pace, P. E., Babu, M. M., & Patel, K. J. (2008). Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Molecular Cell, 32, 767–777.

    Article  PubMed  CAS  Google Scholar 

  6. Scaglione, K. M., Zavodszky, E., Todi, S. V., Patury, S., Xu, P., Rodríguez-Lebrón, E., et al. (2011). Ube2w and Ataxin-3 Coordinately Regulate the Ubiquitin Ligase CHIP. Molecular Cell, 43, 599–612.

    Article  PubMed  CAS  Google Scholar 

  7. Pickart, C. M., & Raasi, S. (2005). Controlled synthesis of polyubiquitin chains. Methods in Enyzmology, 399, 21–36.

    Article  CAS  Google Scholar 

  8. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson, B. A., & Blevins, R. A. (1994). NMR view: A computer program for the visualization and analysis of NMR data. Journal of Biomolecular NMR, 4, 603–614.

    Article  PubMed  CAS  Google Scholar 

  10. Kelley, L. A., & Sternberg, M. J. E. (2009). Protein structure prediction on the web: A case study using the Phyre server. Nature Protocols, 4, 363–371.

    Article  PubMed  CAS  Google Scholar 

  11. Juan, Y. C., Landry, M. C., Sanches, M., Vittal, V., Leung, C. C., Ceccarelli, D. F., et al. (2012). OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Molecular Cell, 45, 384–397.

    Article  Google Scholar 

  12. Sheng, Y., Hong, J.H., Doherty, R., Srikumar, T., Shloush, J., Avvakumov, G.V., et al. (2012). A human ubiquitin conjugating enzyme (E2)-HECT E3 ligase structure-function screen. Molecular Cell Proteomics. 2012. 11, 329–341.

    Google Scholar 

  13. Brzovic, P. S., Lissounov, A., Christensen, D. E., Hoyt, D. W., & Klevit, R. E. (2006). A UbcH5c/ubiquitin noncovalent complex is required for processive BRCA1-direct ubiquitination. Molecular Cell, 21, 873–880.

    Article  PubMed  CAS  Google Scholar 

  14. Sakata, E., Satoh, T., Yamamoto, S., Yamaguchi, Y., Yagi-Utsumi, M., Tanaka, K., et al. (2010). (2010) Crystal structure of UbcH5b ~ ubiquitin intermediate: Insight into the formation of the self-assembled E2 ~ Ub conjugates. Structure, 18, 138–147.

    Article  PubMed  CAS  Google Scholar 

  15. Page, R. C., Pruneda, J. N., Amick, J., Klevit, R. E., & Misra, S. (2012). Structural insights into the conformation and oligomerization of E2 ~ ubiquitin conjugates. Biochemistry, 51, 4175–4187.

    Article  PubMed  CAS  Google Scholar 

  16. Das, R., Mariano, J., Tsai, Y. C., Kalathur, R. C., Kostova, Z., Li, J., et al. (2009). Allosteric activation of E2-RING finger-mediate ubiquityation by a structurally defined specific E2-binding region of gp78. Molecular Cell, 34, 674–685.

    Article  PubMed  CAS  Google Scholar 

  17. Li, W., Tu, D., Li, L., Wollert, T., Ghirlando, R., Brunger, et al. (2009). Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Proceedings of the National Academy of Sciences of the United States of America. 106, 3722–3727.

  18. Hibbert, R. G., Huang, A., Boelens, R., & Sixma, T. K. (2011). E3 ligase Rad18 promotes monubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proceedings of the National Academy of Sciences of the United States of America, 108, 5590–5595.

    Article  PubMed  CAS  Google Scholar 

  19. VanDermark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M., & Wolberger, C. (2001). Molecular insights into polyubiquitin chain assembly: Crystal structure of the Mms2/Ubc13 heterodimer. Cell, 105, 711–720.

    Article  Google Scholar 

  20. Moraes, T. F., Edwards, R. A., McKenna, S., Pastushok, L., Xiao, W., Glover, J. N., et al. (2001). Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2-hUbc13. Natural Structural Biology, 8, 669–673.

    Article  CAS  Google Scholar 

  21. Pickart, C. E., & Rose, I. A. (1985). Functional heterogeneity of ubiquitin carrier proteins. Journal of Biological Chemistry, 260, 1573–1581.

    PubMed  CAS  Google Scholar 

  22. Silver, E. T., Gwozd, T. J., Ptak, C., Goebl, M., & Ellison, M. J. (1992). A chimeric ubiquitin conjugating enzyme that combins the cell cycle properties of CDC34 (UBC3) and the DNA repair properties of RAD6 (UBC2): Implications for the structure, function and evolution of the E2s. EMBO Journal, 11, 3091–3098.

    PubMed  CAS  Google Scholar 

  23. Girod, P. A., & Vierstra, R. D. (1993). A major ubiquitin conjugation system in wheat germ extracts involves a 15-kDa ubiquitin-conjugating enzyme (E2) homologous to the years UBC4/UBC5 gene products. Journal of Biological Chemistry, 268, 955–960.

    PubMed  CAS  Google Scholar 

  24. Ptak, C., Prendergast, J. A., Hodgins, R., Kay, C. M., Chau, V., & Ellison, M. J. (1994). Functional and physical characterization of the cell cycle ubiquitin-conjugating enzyme CDC34 (UBC3). Identification of a functional determinant within the tail that facilitates CDC34 self-association. Journal of Biological Chemistry, 269, 26539–26545.

    PubMed  CAS  Google Scholar 

  25. Haldeman, M. T., Xia, G., Kasperek, E. M., & Pickart, C. M. (1997). Structure and function of ubiquitin conjugating enzyme E2–25K: The tail is a core-dependent activity element. Biochemistry, 36, 10526–10537.

    Article  PubMed  CAS  Google Scholar 

  26. Gazdoiu, S., Yamoah, K., Wu, K., Escalante, C. R., Tappin, I., Bermudez, V., et al. (2005). Proximity-induced activation of human Cdc34 through heterologous dimerization. Proceedings of the National Academy of Sciences of the United States of America, 102(2005), 15053–15058.

    Article  PubMed  CAS  Google Scholar 

  27. Varelas, X., Ptak, C., & Ellison, M. J. (2003). Cdc34 self-association is facilitated by ubiquitin thiolester formation and is required for its catalytic activity. Molecular and Cellular Biology, 23, 5388–5400.

    Article  PubMed  CAS  Google Scholar 

  28. Skowyra, D., Graig, K. L., Tyers, M., Elledge, S. J., & Harper, J. W. (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell, 91, 209–219.

    Article  PubMed  CAS  Google Scholar 

  29. Deffenbaugh, A. E., Scaglione, K. M., Zhang, L., Moore, J. M., Buranda, T., Sklar, L. A., et al. (2003). Release of ubiquitin-charged Cdc34-S – Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Cell, 114, 611–622.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge D. Christensen and C. Eakin for their initial observations on the UBE2W-KK mutant. This study was supported by the National Institute of General Medical Sciences Grants R01 GM088055 (R.E.K.). V. V. was supported in part by the Hurd Fellowship Fund and PHS NRSA 2T32 GM007270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Klevit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 7 kb)

Supplementary material 2 (JPEG 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vittal, V., Wenzel, D.M., Brzovic, P.S. et al. Biochemical and Structural Characterization of the Ubiquitin-Conjugating Enzyme UBE2W Reveals the Formation of a Noncovalent Homodimer. Cell Biochem Biophys 67, 103–110 (2013). https://doi.org/10.1007/s12013-013-9633-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9633-5

Keywords

Navigation