Skip to main content

Advertisement

Log in

Could Dysregulation of UPS be a Common Underlying Mechanism for Cancer and Neurodegeneration? Lessons from UCHL1

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ubiquitin proteasome system (UPS) determines the timing and extent of protein turnover in cells, and it is one of the most strictly controlled cellular mechanisms. Lack of proper control over UPS is attributed to both cancer and to neurodegenerative diseases, yet in different context and direction. Cancerous cells have altered cellular metabolisms, uncontrolled cellular division, and increased proteasome activity. The specialized function prevent neurons from undergoing cellular division but allow them to extend an axon over long distances, establish connections, and to form stable neuronal circuitries. Neurons heavily depend on the proper function of the proteasome and the UPS for their proper function. Reduction of UPS function in vulnerable neurons results in protein aggregation, increased ER stress, and cell death. Identification of compounds that selectively block proteasome function in distinct set of malignancies added momentum to drug discovery efforts, and deubiquitinases (DUBs) gained much attention. This review will focus on ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a DUB that is attributed to both cancer and neurodegeneration. The potential of developing effective treatment strategies for two major health problems by controlling the function of UPS opens up new avenues for innovative approaches and therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ciechanover, A., Heller, H., Elias, S., et al. (1980). ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 77(3), 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  2. Hershko, A., Ciechanover, A., Heller, H., et al. (1980). Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 77(4), 1783–1786.

    Article  PubMed  CAS  Google Scholar 

  3. Varshavsky, A. (2012). The ubiquitin system, an immense realm. Annual Review of Biochemistry, 81, 167–176.

    Article  PubMed  CAS  Google Scholar 

  4. Xu, G., & Jaffrey, S. R. (2011). The new landscape of protein ubiquitination. Nature Biotechnology, 29(12), 1098–1100.

    Article  PubMed  CAS  Google Scholar 

  5. Neutzner, M., & Neutzner, A. (2012). Enzymes of ubiquitination and deubiquitination. Essays in Biochemistry, 52, 37–50.

    PubMed  CAS  Google Scholar 

  6. Liu, J., & Nussinov, R. (2012). The role of allostery in the ubiquitin-proteasome system. Critical Reviews in Biochemistry and Molecular Biology. doi:10.3109/10409238.2012.742856.

    PubMed  Google Scholar 

  7. Komander, D., & Rape, M. (2012). The ubiquitin code. Annual Review of Biochemistry, 81, 203–229.

    Article  PubMed  CAS  Google Scholar 

  8. Chhangani, D., Joshi, A. P., & Mishra, A. (2012). E3 ubiquitin ligases in protein quality control mechanism. Molecular Neurobiology, 45(3), 571–585.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, M. J., Lee, B. H., Hanna, J., et al. (2011). Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Molecular and Cellular Proteomics, 10(5), R110003871.

    Google Scholar 

  10. Nijman, S. M., Luna-Vargas, M. P., Velds, A., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786.

    Article  PubMed  CAS  Google Scholar 

  11. Sowa, M. E., Bennett, E. J., Gygi, S. P., et al. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138(2), 389–403.

    Article  PubMed  CAS  Google Scholar 

  12. Todi, S. V., & Paulson, H. L. (2011). Balancing act: Deubiquitinating enzymes in the nervous system. Trends in Neurosciences, 34(7), 370–382.

    Article  CAS  Google Scholar 

  13. Day, I. N., & Thompson, R. J. (2010). UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Progress in Neurobiology, 90(3), 327–362.

    Article  PubMed  CAS  Google Scholar 

  14. Day, I. N., & Thompson, R. J. (1987). Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Letters, 210(2), 157–160.

    Article  PubMed  CAS  Google Scholar 

  15. Mermerian, A. H., Case, A., Stein, R. L., et al. (2007). Structure-activity relationship, kinetic mechanism, and selectivity for a new class of ubiquitin C-terminal hydrolase-L1 (UCH-L1) inhibitors. Bioorganic and Medicinal Chemistry Letters, 17(13), 3729–3732.

    Article  PubMed  CAS  Google Scholar 

  16. Hirayama, K., Aoki, S., Nishikawa, K., et al. (2007). Identification of novel chemical inhibitors for ubiquitin C-terminal hydrolase-L3 by virtual screening. Bioorganic and Medicinal Chemistry, 15(21), 6810–6818.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, Y., Fallon, L., Lashuel, H. A., et al. (2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell, 111(2), 209–218.

    Article  PubMed  CAS  Google Scholar 

  18. Luchansky, S. J., Lansbury, P. T, Jr, & Stein, R. L. (2006). Substrate recognition and catalysis by UCH-L1. Biochemistry, 45(49), 14717–14725.

    Article  PubMed  CAS  Google Scholar 

  19. Meray, R. K., & Lansbury, P. T, Jr. (2007). Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1. Journal of Biological Chemistry, 282(14), 10567–10575.

    Article  PubMed  CAS  Google Scholar 

  20. Osaka, H., Wang, Y. L., Takada, K., et al. (2003). Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 12(16), 1945–1958.

    Article  PubMed  CAS  Google Scholar 

  21. Saigoh, K., Wang, Y. L., Suh, J. G., et al. (1999). Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genetics, 23(1), 47–51.

    Article  PubMed  CAS  Google Scholar 

  22. Calzada, B., Naves, F. J., Del Valle, M. E., et al. (1994). Distribution of protein gene product 9.5 (PGP 9.5) immunoreactivity in the dorsal root ganglia of adult rat. Annals of Anatomy, 176(5), 437–441.

    Article  PubMed  CAS  Google Scholar 

  23. Schofield, J. N., Day, I. N., Thompson, R. J., et al. (1995). PGP9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse. Brain Research. Developmental Brain Research, 85(2), 229–238.

    Article  PubMed  CAS  Google Scholar 

  24. Weis, J., Katona, I., Muller-Newen, G., et al. (2011). Small-fiber neuropathy in patients with ALS. Neurology, 76(23), 2024–2029.

    Article  PubMed  CAS  Google Scholar 

  25. Kabuta, T., Setsuie, R., Mitsui, T., et al. (2008). Aberrant molecular properties shared by familial Parkinson’s disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Human Molecular Genetics, 17(10), 1482–1496.

    Article  PubMed  CAS  Google Scholar 

  26. Proctor, C. J., Tangeman, P. J., & Ardley, H. C. (2010). Modelling the role of UCH-L1 on protein aggregation in age-related neurodegeneration. PLoS ONE, 5(10), e13175.

    Article  PubMed  Google Scholar 

  27. Setsuie, R., & Wada, K. (2007). The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochemistry International, 51(2–4), 105–111.

    Article  PubMed  CAS  Google Scholar 

  28. Zhong, J., Zhao, M., Ma, Y., et al. (2012). UCHL1 acts as a colorectal cancer oncogene via activation of the beta-catenin/TCF pathway through its deubiquitinating activity. International Journal of Molecular Medicine, 30(2), 430–436.

    PubMed  CAS  Google Scholar 

  29. Trifa, F., Karray-Chouayekh, S., Jmaa, Z. B., et al. (2013). Frequent CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in sporadic and hereditary Tunisian breast cancer patients: clinical significance. Medical Oncology, 30(1), 418.

    Article  PubMed  Google Scholar 

  30. Xiang, T., Li, L., Yin, X., et al. (2012). The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS ONE, 7(1), e29783.

    Article  PubMed  CAS  Google Scholar 

  31. Ummanni, R., Jost, E., Braig, M., et al. (2011). Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation. Molecular Cancer, 10, 129.

    Article  PubMed  CAS  Google Scholar 

  32. Rao, Z., & Ding, Y. (2012). Ubiquitin pathway and ovarian cancer. Current Oncology, 19(6), 324–328.

    Article  PubMed  CAS  Google Scholar 

  33. Carolan, B. J., Heguy, A., Harvey, B. G., et al. (2006). Up-regulation of expression of the ubiquitin carboxyl-terminal hydrolase L1 gene in human airway epithelium of cigarette smokers. Cancer Research, 66(22), 10729–10740.

    Article  PubMed  CAS  Google Scholar 

  34. D’Arcy, P., & Linder, S. (2012). Proteasome deubiquitinases as novel targets for cancer therapy. International Journal of Biochemistry and Cell Biology, 44(11), 1729–1738.

    Article  PubMed  Google Scholar 

  35. Poulsen, J. W., Madsen, C. T., Young, C., et al. (2012). Comprehensive profiling of proteome changes upon sequential deletion of deubiquitylating enzymes. Journal of Proteomics, 75(13), 3886–3897.

    Article  PubMed  CAS  Google Scholar 

  36. Driscoll, J. J., Minter, A., Driscoll, D. A., et al. (2011). The ubiquitin+proteasome protein degradation pathway as a therapeutic strategy in the treatment of solid tumor malignancies. Anti-Cancer Agents in Medicinal Chemistry, 11(2), 242–246.

    Article  PubMed  CAS  Google Scholar 

  37. Cvek, B., & Dvorak, Z. (2011). The ubiquitin-proteasome system (UPS) and the mechanism of action of bortezomib. Current Pharmaceutical Design, 17(15), 1483–1499.

    Article  PubMed  CAS  Google Scholar 

  38. Rzymski, T., Petry, A., Kracun, D., et al. (2012). The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene, 31(31), 3621–3634.

    Article  PubMed  CAS  Google Scholar 

  39. McLaughlin, M., & Vandenbroeck, K. (2011). The endoplasmic reticulum protein folding factory and its chaperones: New targets for drug discovery? British Journal of Pharmacology, 162(2), 328–345.

    Article  PubMed  CAS  Google Scholar 

  40. Hong, Y., Ho, K. S., Eu, K. W., et al. (2007). A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clinical Cancer Research, 13(4), 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  41. Mandelker, D. L., Yamashita, K., Tokumaru, Y., et al. (2005). PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Research, 65(11), 4963–4968.

    Article  PubMed  CAS  Google Scholar 

  42. Sato, F., & Meltzer, S. J. (2006). CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer, 106(3), 483–493.

    Article  PubMed  CAS  Google Scholar 

  43. Lee, Y. M., Lee, J. Y., Kim, M. J., et al. (2006). Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features. Cancer Science, 97(11), 1205–1210.

    Article  PubMed  CAS  Google Scholar 

  44. Mizukami, H., Shirahata, A., Goto, T., et al. (2008). PGP9.5 methylation as a marker for metastatic colorectal cancer. Anticancer Research, 28(5A), 2697–2700.

    PubMed  CAS  Google Scholar 

  45. Frisan, T., Coppotelli, G., Dryselius, R., et al. (2012). Ubiquitin C-terminal hydrolase-L1 interacts with adhesion complexes and promotes cell migration, survival, and anchorage independent growth. FASEB Journal, 26(12), 5060–5070.

    Article  PubMed  CAS  Google Scholar 

  46. Kim, H. J., Kim, Y. M., Lim, S., et al. (2009). Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene, 28(1), 117–127.

    Article  PubMed  CAS  Google Scholar 

  47. Bheda, A., Yue, W., Gullapalli, A., et al. (2009). Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling. PLoS ONE, 4(6), e5955.

    Article  PubMed  Google Scholar 

  48. Bheda, A., Shackelford, J., & Pagano, J. S. (2009). Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PLoS ONE, 4(8), e6764.

    Article  PubMed  Google Scholar 

  49. Gestwicki, J. E., & Garza, D. (2012). Protein quality control in neurodegenerative disease. Progress in Molecular Biology and Translational Science, 107, 327–353.

    Article  PubMed  CAS  Google Scholar 

  50. Miller, R. J., & Wilson, S. M. (2003). Neurological disease: UPS stops delivering! Trends in Pharmacological Sciences, 24(1), 18–23.

    Article  PubMed  CAS  Google Scholar 

  51. Goedert, M., Spillantini, M. G., Del Tredici, K., et al. (2012). 100 years of Lewy pathology. Nature Reviews Neurology, 9(1), 13–24.

    Article  PubMed  Google Scholar 

  52. Spillantini, M. G., Crowther, R. A., Jakes, R., et al. (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  53. Neumann, M., Sampathu, D. M., Kwong, L. K., et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–133.

    Article  PubMed  CAS  Google Scholar 

  54. Prudencio, M., Durazo, A., Whitelegge, J. P., et al. (2010). An examination of wild-type SOD1 in modulating the toxicity and aggregation of ALS-associated mutant SOD1. Human Molecular Genetics, 19(24), 4774–4789.

    Article  PubMed  CAS  Google Scholar 

  55. Giliberto, L., d’Abramo, C., Acker, C. M., et al. (2010). Transgenic expression of the amyloid-beta precursor protein-intracellular domain does not induce Alzheimer’s disease-like traits in vivo. PLoS ONE, 5(7), e11609.

    Article  PubMed  Google Scholar 

  56. Carvalho, A. N., Marques, C., Rodrigues, E., et al. (2012). Ubiquitin-Proteasome System Impairment and MPTP-Induced Oxidative Stress in the Brain of C57BL/6 Wild-type and GSTP Knockout Mice. Molecular Neurobiology. doi:10.1007/s12035-012-8368-4.

    Google Scholar 

  57. Komatsu, M., Waguri, S., Chiba, T., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095), 880–884.

    Article  PubMed  CAS  Google Scholar 

  58. Anderson, C., Crimmins, S., Wilson, J. A., et al. (2005). Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. Journal of Neurochemistry, 95(3), 724–731.

    Article  PubMed  CAS  Google Scholar 

  59. Walters, B. J., Campbell, S. L., Chen, P. C., et al. (2008). Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Molecular and Cellular Neuroscience, 39(4), 539–548.

    Article  PubMed  CAS  Google Scholar 

  60. Crimmins, S., Jin, Y., Wheeler, C., et al. (2006). Transgenic rescue of ataxia mice with neuronal-specific expression of ubiquitin-specific protease 14. Journal of Neuroscience, 26(44), 11423–11431.

    Article  PubMed  CAS  Google Scholar 

  61. Cartier, A. E., Djakovic, S. N., Salehi, A., et al. (2009). Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. Journal of Neuroscience, 29(24), 7857–7868.

    Article  PubMed  CAS  Google Scholar 

  62. Leroy, E., Boyer, R., Auburger, G., et al. (1998). The ubiquitin pathway in Parkinson’s disease. Nature, 395(6701), 451–452.

    Article  PubMed  CAS  Google Scholar 

  63. Lowe, J., McDermott, H., Landon, M., et al. (1990). Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. Journal of Pathology, 161(2), 153–160.

    Article  PubMed  CAS  Google Scholar 

  64. Choi, J., Levey, A. I., Weintraub, S. T., et al. (2004). Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. Journal of Biological Chemistry, 279(13), 13256–13264.

    Article  PubMed  CAS  Google Scholar 

  65. Barrachina, M., Castano, E., Dalfo, E., et al. (2006). Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiology of Diseases, 22(2), 265–273.

    Article  CAS  Google Scholar 

  66. Lederer, C. W., Torrisi, A., Pantelidou, M., et al. (2007). Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC genomics, 8, 26.

    Article  PubMed  Google Scholar 

  67. Gong, B., Cao, Z., Zheng, P., et al. (2006). Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell, 126(4), 775–788.

    Article  PubMed  CAS  Google Scholar 

  68. Hsu, S. H., Lai, M. C., Er, T. K., et al. (2010). Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) regulates the level of SMN expression through ubiquitination in primary spinal muscular atrophy fibroblasts. Clinica Chimica Acta, 411(23–24), 1920–1928.

    Article  CAS  Google Scholar 

  69. Cottrell, B. A., Galvan, V., Banwait, S., et al. (2005). A pilot proteomic study of amyloid precursor interactors in Alzheimer’s disease. Annals of Neurology, 58(2), 277–289.

    Article  PubMed  CAS  Google Scholar 

  70. Caballero, O. L., Resto, V., Patturajan, M., et al. (2002). Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene, 21(19), 3003–3010.

    Article  PubMed  CAS  Google Scholar 

  71. Lakshmana, M. K., Chung, J. Y., Wickramarachchi, S., et al. (2010). A fragment of the scaffolding protein RanBP9 is increased in Alzheimer’s disease brains and strongly potentiates amyloid-beta peptide generation. FASEB Journal, 24(1), 119–127.

    Article  PubMed  Google Scholar 

  72. Zhang, M., Deng, Y., Luo, Y., et al. (2012). Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. Journal of Neurochemistry, 120(6), 1129–1138.

    PubMed  CAS  Google Scholar 

  73. Healy, D. G., Abou-Sleiman, P. M., Casas, J. P., et al. (2006). UCHL-1 is not a Parkinson’s disease susceptibility gene. Annals of Neurology, 59(4), 627–633.

    Article  PubMed  CAS  Google Scholar 

  74. Maraganore, D. M., Lesnick, T. G., Elbaz, A., et al. (2004). UCHL1 is a Parkinson’s disease susceptibility gene. Annals of Neurology, 55(4), 512–521.

    Article  PubMed  Google Scholar 

  75. Bilguvar, K., Tyagi, N. K., Ozkara, C., et al. (2013). Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1222732110.

    PubMed  Google Scholar 

  76. Johnson, J. O., Mandrioli, J., Benatar, M., et al. (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68(5), 857–864.

    Article  PubMed  CAS  Google Scholar 

  77. Hirano, M. (2008). VAPB: New genetic clues to the pathogenesis of ALS. Neurology, 70(14), 1161–1162.

    Article  PubMed  Google Scholar 

  78. Deng, H. X., Chen, W., Hong, S. T., et al. (2011). Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature, 477(7363), 211–215.

    Article  PubMed  CAS  Google Scholar 

  79. Fecto, F., Yan, J., Vemula, S. P., et al. (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Archives of Neurology, 68(11), 1440–1446.

    Article  PubMed  Google Scholar 

  80. Shukla, V., Mishra, S. K., & Pant, H. C. (2011). Oxidative stress in neurodegeneration. Advances in Pharmacological Sciences, 20115, 72634.

    Google Scholar 

  81. Rosen, D. R. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 364(6435), 362.

    PubMed  CAS  Google Scholar 

  82. Bosco, D. A., Morfini, G., Karabacak, N. M., et al. (2010). Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neuroscience, 13(11), 1396–1403.

    Article  PubMed  CAS  Google Scholar 

  83. Castegna, A., Aksenov, M., Aksenova, M., et al. (2002). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and Medicine, 33(4), 562–571.

    Article  PubMed  CAS  Google Scholar 

  84. Zhou, Y., Gu, G., Goodlett, D. R., et al. (2004). Analysis of alpha-synuclein-associated proteins by quantitative proteomics. Journal of Biological Chemistry, 279(37), 39155–39164.

    Article  PubMed  CAS  Google Scholar 

  85. Woodman, B., Butler, R., Landles, C., et al. (2007). The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Research Bulletin, 72(2–3), 83–97.

    Article  PubMed  CAS  Google Scholar 

  86. Li, L., Tao, Q., Jin, H., et al. (2010). The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clinical Cancer Research, 16(11), 2949–2958.

    Article  PubMed  CAS  Google Scholar 

  87. Ewing, R. M., Chu, P., Elisma, F., et al. (2007). Large-scale mapping of human protein–protein interactions by mass spectrometry. Molecular Systems Biology, 3, 89.

    Article  PubMed  Google Scholar 

  88. Paudel, N., Sadagopan, S., Balasubramanian, S., et al. (2012). Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen and angiogenin interact with common host proteins, including annexin A2, which is essential for survival of latently infected cells. Journal of Virology, 86(3), 1589–1607.

    Article  PubMed  CAS  Google Scholar 

  89. Deribe, Y. L., Wild, P., Chandrashaker, A., et al. (2009). Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Science Signaling, 2(102), ra84.

    Article  PubMed  Google Scholar 

  90. Naiki, T., Nagaki, M., Shidoji, Y., et al. (2002). Analysis of gene expression profile induced by hepatocyte nuclear factor 4alpha in hepatoma cells using an oligonucleotide microarray. Journal of Biological Chemistry, 277(16), 14011–14019.

    Article  PubMed  CAS  Google Scholar 

  91. Altun, M., Kramer, H. B., Willems, L. I., et al. (2011). Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chemistry and Biology, 18(11), 1401–1412.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Les Turner ALS Foundation, Wenske Foundation, and Brain Research Foundation Grants (P.H.O.). J.H.J. is supported by ALSA Safenowitz postdoctoral fellowship. The authors thank Dr. Baris Genc and Michael Tu for comments and critical reading of the manuscript.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hande Özdinler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jara, J.H., Frank, D.D. & Özdinler, P.H. Could Dysregulation of UPS be a Common Underlying Mechanism for Cancer and Neurodegeneration? Lessons from UCHL1. Cell Biochem Biophys 67, 45–53 (2013). https://doi.org/10.1007/s12013-013-9631-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9631-7

Keywords

Navigation