Skip to main content

Advertisement

Log in

Absolute Quantification of E1, Ubiquitin-Like Proteins and Nedd8–MLN4924 Adduct by Mass Spectrometry

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ubiquitin (Ub) and ubiquitin-like (Ubl) proteins regulate a variety of important cellular processes by forming covalent conjugates with target proteins or lipids. Ubl conjugation is catalyzed by a cascade of proteins including activating enzymes (E1), conjugating enzymes (E2), and in many cases ligation enzymes (E3). The discovery of MLN4924 (Brownell et al., Mol Cell 37: 102–111, 1), an investigational small molecule that is a mechanism-based inhibitor of NEDD8-activating enzyme (NAE), reveals a promising strategy of targeting E1/Ubl pathway for therapeutic purposes. In order to better understand, the biochemical dynamics of Ubl conjugation in cells and tissues, we have developed a mass spectrometry-based method to quantify E1 and Ubls using isotope-labeled proteins as internal standards. Furthermore, we have used the described method to quantify levels of the covalent Nedd8-inhibitor adduct formed in MLN4924 treated cells and tissues. The Nedd8–MLN4924 adduct is a tight-binding inhibitor of NAE, and its cellular concentration represents an indirect pharmacodynamic readout of NAE/Nedd8 pathway inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brownell, J. E., Sintchak, M. D., Gavin, J. M., Liao, H., Bruzzese, F. J., Bump, N. J., et al. (2010). Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: The NEDD8 E1 inhibitor MLN4924 forms a NEDD8–AMP mimetic in situ. Molecular Cell, 37, 102–111.

    Article  PubMed  CAS  Google Scholar 

  2. Welchman, R. L., Gordon, C., & Mayer, R. J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Reviews Molecular Cell Biology, 6, 599–609.

    Article  PubMed  CAS  Google Scholar 

  3. Schlesinger, D. H., Goldstein, G., & Niall, H. D. (1975). The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry, 14, 2214–2218.

    Article  PubMed  CAS  Google Scholar 

  4. Mayer, R. J., Landon, M., & Layfield, R. (1998). Ubiquitin superfolds: intrinsic and attachable regulators of cellular activities? Folding and Design, 3, R97–R99.

    Article  PubMed  CAS  Google Scholar 

  5. Hochstrasser, M. (2009). Origin and function of ubiquitin-like protein. Nature, 458, 422–429.

    Article  PubMed  CAS  Google Scholar 

  6. Bedford, L., Lowe, J., Dick, L. R., Mayer, R. J., & Brownell, J. E. (2011). Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets. Nature Reviews Drug Discovery, 10, 29–46.

    Article  PubMed  CAS  Google Scholar 

  7. Kerscher, O., Felberbaum, R., & Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual Review of Cell and Developmental Biology, 22, 159–180.

    Article  PubMed  CAS  Google Scholar 

  8. Komander, D., Clague, M. J., & Urbé, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 10, 550–563.

    Article  PubMed  CAS  Google Scholar 

  9. Soucy, T. A., Smith, P. G., Milhollen, M. A., Berger, A. J., Gavin, J. M., Adhikari, S., et al. (2009). An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 458, 732–736.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, J. J., Tsu, C. A., Gavin, J. M., Milhollen, M. A., Bruzzese, F. J., Mallender, W. D., et al. (2011). Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. Journal of Biological Chemistry, 286, 40867–40877.

    Article  PubMed  CAS  Google Scholar 

  11. Soucy, T. A., Dick, L. R., Smith, P. G., Milhollen, M. A., & Brownell, J. E. (2010). The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer, 1, 708–716.

    Article  PubMed  CAS  Google Scholar 

  12. Soucy, T. A., Smith, P. G., & Rolfe, M. (2009). Targeting NEDD8-activated cullin-RING ligases for the treatment of cancer. Clinical Cancer Research, 15, 3912–3916.

    Article  PubMed  CAS  Google Scholar 

  13. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M., & Masucci, M. G. (2000). Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnology, 18, 538–543.

    Article  PubMed  CAS  Google Scholar 

  14. Kaiser, S. E., Riley, B. E., Shaler, T. A., Trevino, R. S., Becker, C. H., Schulman, H., et al. (2011). Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nature Methods, 8, 691–696.

    Article  PubMed  CAS  Google Scholar 

  15. Hanke, S., Besir, H., Oesterhelt, D., & Mann, M. (2008). Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. Journal of Proteome Research, 7, 1118–1130.

    Article  PubMed  CAS  Google Scholar 

  16. Stephen, W. H., Paul, F. G. S., & Claire, E. E. (2012). The use of selected reaction monitoring in quantitative proteomics. Bioanalysis, 4, 1763–1786.

    Article  Google Scholar 

  17. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1, 2856–2860.

    Article  PubMed  CAS  Google Scholar 

  18. Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26, 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  19. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., & Gygi, S. P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences of the United States of America, 100, 6940–6945.

    Article  PubMed  CAS  Google Scholar 

  20. Ren, J., Wang, Y., Gao, Y., Mehta, S. B., & Lee, C. G. (2011). Fat10 mediates the effect of TNF-α in inducing chromosomal instability. Journal of Cell Science, 124, 3665–3675.

    Article  PubMed  CAS  Google Scholar 

  21. Chiu, Y. H., Sun, Q., & Chen, Z. J. (2007). E1–L2 activates both ubiquitin and FAT10. Molecular Cell, 27, 1014–1023.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank J. Bolen for support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Brownell, J.E., Xu, Q. et al. Absolute Quantification of E1, Ubiquitin-Like Proteins and Nedd8–MLN4924 Adduct by Mass Spectrometry. Cell Biochem Biophys 67, 139–147 (2013). https://doi.org/10.1007/s12013-013-9625-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9625-5

Keywords

Navigation