Skip to main content

Advertisement

Log in

Noninvasive Monitoring of Small Intestinal Oxygen in a Rat Model of Chronic Mesenteric Ischemia

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We noninvasively monitored the partial pressure of oxygen (pO2) in rat’s small intestine using a model of chronic mesenteric ischemia by electron paramagnetic resonance oximetry over a 7-day period. The particulate probe lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) was embedded into the oxygen permeable material polydimethyl siloxane by cast-molding and polymerization (Oxy-Chip). A one-time surgical procedure was performed to place the Oxy-Chip on the outer wall of the small intestine (SI). The superior mesenteric artery (SMA) was banded to ~30 % of blood flow for experimental rats. Noninvasive measurement of pO2 was performed at the baseline for control rats or immediate post-banding and on days 1, 3, and 7. The SI pO2 for control rats remained stable over the 7-day period. The pO2 on day-7 was 54.5 ± 0.9 mmHg (mean ± SE). SMA-banded rats were significantly different from controls with a noted reduction in pO2 post banding with a progressive decline to a final pO2 of 20.9 ± 4.5 mmHg (mean ± SE; p = 0.02). All SMA-banded rats developed adhesions around the Oxy-Chip, yet remained asymptomatic. The hypoxia marker Hypoxyprobe™ was used to validate the low tissue pO2. Brown cytoplasmic staining was consistent with hypoxia. Mild brown staining was noted predominantly on the villus tips in control animals. SMA-banded rats had an extended region of hypoxic involvement in the villus with a higher intensity of cytoplasmic staining. Deep brown stainings of the enteric nervous system neurons and connective tissue both within layers and in the mesentery were noted. SMA-banded rats with lower pO2 values had a higher intensity of staining. Thus, monitoring SI pO2 using the probe Oxy-Chip provides a valid measure of tissue oxygenation. Tracking pO2 in conditions that produce chronic mesenteric ischemia will contribute to our understanding of intestinal tissue oxygenation and how changes impact symptom evolution and the trajectory of chronic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kulkarni, A. C., Kuppusamy, P., & Parinandi, N. (2007). Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxidants & Redox Signaling, 9, 1717–1730.

    Article  CAS  Google Scholar 

  2. Kutala, V. K., Khan, M., Angelos, M. G., & Kuppusamy, P. (2007). Role of oxygen in postischemic myocardial injury. Antioxidants & Redox Signaling, 9, 1193–1206.

    Article  CAS  Google Scholar 

  3. Sandek, A., Bauditz, J., Swidsinski, A., Buhner, S., Weber-Eibel, J., von Haehling, S., et al. (2007). Altered intestinal function in patients with chronic heart failure. Journal of the American College of Cardiology, 50, 1561–1569.

    Article  PubMed  CAS  Google Scholar 

  4. Parks, D. A., Bulkley, G. B., Granger, D. N., Hamilton, S. R., & McCord, J. M. (1982). Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology, 82, 9–15.

    PubMed  CAS  Google Scholar 

  5. Phillips, J. P., Kyriacou, P. A., Jones, D. P., Shelley, K. H., & Langford, R. M. (2008). Pulse oximetry and photoplethysmographic waveform analysis of the esophagus and bowel. Current Opinion in Anaesthesiology, 21, 779–783.

    Article  PubMed  Google Scholar 

  6. van Noord, D., Mensink, P. B., de Knegt, R. J., Ouwendijk, M., Francke, J., van Vuuren, A. J., et al. (2011). Serum markers and intestinal mucosal injury in chronic gastrointestinal ischemia. Digestive Diseases and Sciences, 56(2), 506–512.

    Article  PubMed  CAS  Google Scholar 

  7. Meenakshisundaram, G., Eteshola, E., Pandian, R. P., Bratasz, A., Selvendiran, K., Lee, S. C., et al. (2009). Oxygen sensitivity and biocompatibility of an implantable paramagnetic probe for repeated measurements of tissue oxygenation. Biomedical Microdevices, 11, 817–826.

    Article  PubMed  CAS  Google Scholar 

  8. Meenakshisundaram, G., Eteshola, E., Pandian, R. P., Bratasz, A., Lee, S. C., & Kuppusamy, P. (2009). Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry. Biomedical Microdevices, 11, 773–782.

    Article  PubMed  CAS  Google Scholar 

  9. Eteshola, E., Pandian, R. P., Lee, S. C., & Kuppusamy, P. (2009). Polymer coating of paramagnetic particulates for in vivo oxygen-sensing applications. Biomedical Microdevices, 11, 379–387.

    Article  PubMed  CAS  Google Scholar 

  10. Khan, M., Kutala, V. K., Vikram, D. S., Wisel, S., Chacko, S. M., Kuppusamy, M. L., et al. (2007). Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. American Journal of Physiology, 293, H2129–H2139.

    PubMed  CAS  Google Scholar 

  11. Khan, M., Kutala, V. K., Wisel, S., Chacko, S. M., Kuppusamy, M. L., Kwiatkowski, P., et al. (2008). Measurement of oxygenation at the site of stem cell therapy in a murine model of myocardial infarction. Advances in Experimental Medicine and Biology, 614, 45–52.

    Article  PubMed  Google Scholar 

  12. Pandian, R. P., Parinandi, N. L., Ilangovan, G., Zweier, J. L., & Kuppusamy, P. (2003). Novel particulate spin probe for targeted determination of oxygen in cells and tissues. Free Radical Biology Medicine, 35, 1138–1148.

    Article  PubMed  CAS  Google Scholar 

  13. Chacko, S. M., Khan, M., Kuppusamy, M. L., Pandian, R. P., Varadharaj, S., Selvendiran, K., et al. (2009). Myocardial oxygenation and functional recovery in infarct rat hearts transplanted with mesenchymal stem cells. American Journal Physiology Heart Circulation Physiology, 296, H1263–H1273.

    Article  CAS  Google Scholar 

  14. Tarhan, O. R., Barut, I., Sutcu, R., Akdeniz, Y., & Akturk, O. (2006). Pentoxifylline, a methyl xanthine derivative, reduces peritoneal adhesions and increases peritoneal fibrinolysis in rats. Tohoku Journal of Experimental Medicine, 209, 249–255.

    Article  PubMed  CAS  Google Scholar 

  15. Wu, B., Qiu, W., Wang, P., Yu, H., Cheng, T., Zambetti, G. P., et al. (2007). p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut, 56, 645–654.

    Article  PubMed  CAS  Google Scholar 

  16. Granger, D. N., Hollwarth, M. E., & Parks, D. A. (1986). Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiology Scandinavia Supplement, 548, 47–63.

    CAS  Google Scholar 

  17. Mellstrom, A., Mansson, P., Jonsson, K., & Hartmann, M. (2009). Measurements of subcutaneous tissue pO2 reflect oxygen metabolism of the small intestinal mucosa during hemorrhage and resuscitation. An experimental study in pigs. European Surgical Research, 42, 122–129.

    Article  PubMed  CAS  Google Scholar 

  18. Yung, L. M., Leung, F. P., Yao, X., Chen, Z. Y., & Huang, Y. (2006). Reactive oxygen species in vascular wall. Cardiovascular & Hematological Disorders, 6, 1–19.

    Article  CAS  Google Scholar 

  19. Cizova, H., Lojek, A., Kubala, L., & Ciz, M. (2004). The effect of intestinal ischemia duration on changes in plasma antioxidant defense status in rats. Physiological Research, 53, 523–531.

    PubMed  CAS  Google Scholar 

  20. Meredith, I. T., Currie, K. E., Anderson, T. J., Roddy, M. A., Ganz, P., & Creager, M. A. (1996). Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide. American Journal of Physiology, 270, H1435–H1440.

    PubMed  CAS  Google Scholar 

  21. Loscalzo, J., & Vita, J. A. (1994). Ischemia, hyperemia, exercise, and nitric oxide. Complex physiology and complex molecular adaptations. Circulation, 90, 2556–2559.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, A. L., Silver, A. E., Shvenke, E., Schopfer, D. W., Jahangir, E., Titas, M. A., et al. (2007). Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2113–2119.

    Article  PubMed  CAS  Google Scholar 

  23. Goethals, L., Debucquoy, A., Perneel, C., Geboes, K., Ectors, N., De Schutter, H., et al. (2006). Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. International Journal of Radiation Oncology Biology Physics, 65, 246–254.

    Article  CAS  Google Scholar 

  24. Bohlen, H. G. (1998). Integration of intestinal structure, function, and microvascular regulation. Microcirculation, 5, 27–37.

    PubMed  CAS  Google Scholar 

  25. Bohlen, H. G. (1980). Intestinal mucosal oxygenation influences absorptive hyperemia. American Journal of Physiology, 239, H489–H493.

    PubMed  CAS  Google Scholar 

  26. Hall, P. A., Coates, P. J., Ansari, B., & Hopwood, D. (1994). Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. Journal of Cell Science, 107(Pt 12), 3569–3577.

    PubMed  CAS  Google Scholar 

  27. Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26, 239–257.

    Article  PubMed  CAS  Google Scholar 

  28. Potten, C. S., & Booth, C. (1997). The role of radiation-induced and spontaneous apoptosis in the homeostasis of the gastrointestinal epithelium: A brief review. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 118, 473–478.

    Article  CAS  Google Scholar 

  29. Baudelet, C., & Gallez, B. (2004). Effect of anesthesia on the signal intensity in tumors using BOLD-MRI: comparison with flow measurements by Laser Doppler flowmetry and oxygen measurements by luminescence-based probes. Magnetic Resonance Imaging, 22, 905–912.

    Article  PubMed  CAS  Google Scholar 

  30. Holmdahl, L., & Risberg, B. (1997). Adhesions: Prevention and complications in general surgery. European Journal of Surgery, 163, 169–174.

    PubMed  CAS  Google Scholar 

  31. Holmdahl, L., & Ivarsson, M. L. (1999). The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. European Journal of Surgery, 165, 1012–1019.

    Article  PubMed  CAS  Google Scholar 

  32. Brauner, A., Hylander, B., & Wretlind, B. (1993). Interleukin-6 and interleukin-8 in dialysate and serum from patients on continuous ambulatory peritoneal dialysis. American Journal of Kidney Disease, 22, 430–435.

    CAS  Google Scholar 

  33. Brauner, A., Hylander, B., & Wretlind, B. (1996). Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-1 receptor antagonist in dialysate and serum from patients on continuous ambulatory peritoneal dialysis. American Journal of Kidney Disease, 27, 402–408.

    Article  CAS  Google Scholar 

  34. Saed, G. M., Zhang, W., & Diamond, M. P. (2000). Effect of hypoxia on stimulatory effect of TGF-beta 1 on MMP-2 and MMP-9 activities in mouse fibroblasts. Journal of the Society of Gynecological Investigation, 7, 348–354.

    Article  CAS  Google Scholar 

  35. Saed, G. M., & Diamond, M. P. (2002). Hypoxia-induced irreversible up-regulation of type I collagen and transforming growth factor-beta1 in human peritoneal fibroblasts. Fertility and Sterility, 78, 144–147.

    Article  PubMed  Google Scholar 

  36. Milligan, D. W., & Raftery, A. T. (1974). Observations on the pathogenesis of peritoneal adhesions: A light and electron microscopical study. British Journal of Surgery, 61, 274–280.

    Article  PubMed  CAS  Google Scholar 

  37. Terada, L. S., Guidot, D. M., Leff, J. A., Willingham, I. R., Hanley, M. E., Piermattei, D., & Repine, J. E. (1992). Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proceedings of the National Academy of Science of the United States of America, 89, 3362–3366.

    Google Scholar 

  38. Snoj, M. (1993). Intra-abdominal adhesion formation is initiated by phospholipase A2. Medical Hypotheses, 41, 525–528.

    Article  PubMed  CAS  Google Scholar 

  39. Vikram, D. S., Bratasz, A., Ahmad, R., & Kuppusamy, P. (2007). A comparative evaluation of EPR and OxyLite oximetry using a random sampling of pO2 in a murine tumor. Radiation Research, 168, 308–315.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Career Training Award (K01-NR009787-01) from the National Institute of Health: National Institute of Nursing Research to E.M. Fisher. We thank Dr. Sheau-Huey Chiu for assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine M. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, E.M., Khan, M., Salisbury, R. et al. Noninvasive Monitoring of Small Intestinal Oxygen in a Rat Model of Chronic Mesenteric Ischemia. Cell Biochem Biophys 67, 451–459 (2013). https://doi.org/10.1007/s12013-013-9611-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9611-y

Keywords

Navigation