Skip to main content

Advertisement

Log in

Bladder Polypoid Cystitis-Derived A20 Associates with Tumorigenesis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Bladder chronic inflammation is associated with the pathogenesis of bladder cancer; the underlying mechanism is unclear. The PT53 gene is an important anticancer gene in the body, which is suppressed in cancer. The ubiquitin E3 ligase A20 (A20) plays a role in regulating the activities of epithelial cells. This study was designed to investigate the correlation between A20 and the pathogenesis of bladder cancer. The biopsy tissues of human bladder cancer, bladder polypoid cystitis, and chronic inflammation were collected; the levels of A20 and p53 were analyzed by quantitative real-time RT-PCR, Western blotting, and immune precipitation. HEK293 cells were employed to test the role of overexpression of A20 in the suppression of the p53 gene in the cells. Fifty-six patients with bladder cancer, 48 patients with bladder polypoid cystitis, and 16 patients with bladder chronic inflammation were recruited into this study. Human bladder cancer tissue and the polypoid tissue showed high levels of A20, which had a positive correlation with the tumorigenesis in the bladder; 12 out of 46 (26.1 %) patients with bladder polypoid cystitis were diagnosed as bladder cancer. A20 bound to p53 to form complexes in bladder cancer tissue and bladder polypoid tissue. The overexpression of A20 suppresses p53 protein levels in HEK293 cells. A20 has a positive correlation in the tumorigenesis of bladder polypoid disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blick, C. G. T., Nazir, S. A., Mallett, S., Turney, B. W., Onwu, N. N., Roberts, I. S. D., et al. (2012). Evaluation of diagnostic strategies for bladder cancer using computed tomography (CT) urography, flexible cystoscopy and voided urine cytology: results for 778 patients from a hospital haematuria clinic. BJU Int, 110, 84–94.

    Article  PubMed  Google Scholar 

  2. Chou, R., & Dana, T. (2010). Screening adults for bladder cancer: A review of the evidence for the U.S. preventive services task force. Annals of Internal Medicine, 153, 461–468.

    Article  PubMed  Google Scholar 

  3. Tilki, D., Burger, M., Dalbagni, G., Grossman, H. B., Hakenberg, O. W., Palou, J., et al. (2011). Urine markers for detection and surveillance of non-muscle-invasive bladder cancer. European Urology, 60, 484–492.

    Article  PubMed  Google Scholar 

  4. McKenney, J. K., Amin, M. B., & Young, R. H. (0 AD) Urothelial (transitional cell) Papilloma of the urinary bladder: A clinicopathologic study of 26 cases. Modern Pathology, 16, 623–629.

  5. Huppmann, A. R., & Pawel, B. R. (2011). Polyps and masses of the pediatric urinary bladder: A 21-year pathology review. Pediatric and Developmental Pathology, 14, 438–444.

    Article  PubMed  Google Scholar 

  6. Cohen, S. M. (2002). Comparative pathology of proliferative lesions of the urinary bladder. Toxicologic Pathology, 30, 663–671.

    Article  PubMed  CAS  Google Scholar 

  7. Stadler, W. M., Lerner, S. P., Groshen, S., Stein, J. P., Shi, S. R., Raghavan, D., et al. (2011). Phase III study of molecularly targeted adjuvant therapy in locally advanced urothelial cancer of the bladder based on p53 status. Journal of Clinical Oncology, 29, 3443–3449.

    Article  PubMed  CAS  Google Scholar 

  8. Wei, Z., Ye, Z., & Chen, Z. (2007). Expression of hTERT, p53 and PCNA in cystitis glandularis. Journal of Huazhong University Science Technology Medical Science, 27, 437–439.

    Article  Google Scholar 

  9. Yu, J., Lee, H. S., Lee, S. M., Yu, H. C., Moon, W. S., Chung, M. J., et al. (2011). Aggravation of post-ischemic liver injury by overexpression of A20, an NF-kappa B suppressor. Journal of Hepatology, 55, 328–336.

    Article  PubMed  CAS  Google Scholar 

  10. Hövelmeyer, N., Reissig, S., Xuan, N. T., Adams-Quack, P., Lukas, D., Nikolaev, A., et al. (2011). A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. European Journal of Immunology, 41, 595–601.

    Article  PubMed  Google Scholar 

  11. Vereecke, L., Sze, M., Guire, C. M., Rogiers, B., Chu, Y., Schmidt-Supprian, M., et al. (2010). Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. Journal of Experimental Medicine, 207, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  12. An, Y. F., Li, T. L., Geng, X. R., Yang, G., Zhao, C. Q., & Yang, P. C. (2012). Ubiquitin E3 ligase A20 facilitates processing microbial product in nasal epithelial cells. Journal of Biological Chemistry, 287, 35318–35323.

    Article  PubMed  CAS  Google Scholar 

  13. Song, C. H., Liu, Z. Q., Huang, S., Zheng, P. Y., & Yang, P. C. (2012). Probiotics promote endocytic allergen degradation in gut epithelial cells. Biochemical and Biophysical Research Communications, 426, 135–140.

    Article  PubMed  CAS  Google Scholar 

  14. Vucic, D., Dixit, V. M., & Wertz, I. E. (2011). Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death. Nature Reviews Molecular Cell Biology, 12, 439–452.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, J. G., Eguchi, J., Kruse, C. A., Gomez, G. G., Fakhrai, H., Schroter, S., et al. (2007). Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clinical Cancer Research, 13, 566–575.

    Article  PubMed  CAS  Google Scholar 

  16. Bellail, A. C., Olson, J. J., Yang, X., Chen, Z. J., & Hao, C. (2012). A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma. Cancer Discovery, 2, 140–155.

    Article  PubMed  CAS  Google Scholar 

  17. Harhaj, E. W., & Dixit, V. M. (2011). Deubiquitinases in the regulation of NF-[kappa]B signaling. Cell Research, 21, 22–39.

    Article  PubMed  CAS  Google Scholar 

  18. Okayasu, I. (2012). Development of ulcerative colitis and its associated colorectal neoplasia as a model of the organ-specific chronic inflammation-carcinoma sequence. Pathology International, 62, 368–380.

    Article  PubMed  CAS  Google Scholar 

  19. Hymowitz, S. G., & Wertz, I. E. (2010). A20: From ubiquitin editing to tumour suppression. Nature Reviews Cancer, 10, 332–341.

    Article  PubMed  CAS  Google Scholar 

  20. Mladenova, D., & Kohonen-Corish, M. R. (2012). Mouse models of inflammatory bowel disease—insights into the mechanisms of inflammation-associated colorectal cancer. In Vivo, 26, 627–646.

    PubMed  CAS  Google Scholar 

  21. Huang, P., Geng, X. R., Yang, G., Chen, C., Liu, Z., & Yang, P. C. (2012). Ubiquitin E3 ligase A20 contributes to maintaining epithelial barrier function. Cellular Physiology and Biochemistry, 30, 702–710.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant of the National Natural & Science Foundation of China.

Conflict of Interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Li, S. Bladder Polypoid Cystitis-Derived A20 Associates with Tumorigenesis. Cell Biochem Biophys 67, 669–673 (2013). https://doi.org/10.1007/s12013-013-9556-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9556-1

Keywords

Navigation