Skip to main content

Advertisement

Log in

DNA Methylation and Cancer Development: Molecular Mechanism

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

DNA methylation is a significant regulator of gene expression, and its role in carcinogenesis recently has been a subject of remarkable interest. The aim of this review is to analyze the mechanism and cell regulatory effects of both hypo- and hyper-DNA methylation on cancer. In this review, we report new developments and their implications regarding the effects of DNA methylation on cancer development. Indeed, alteration of the pattern of DNA methylation has been a constant finding in cancer cells of the same type and differences in the pattern of DNA methylation not only occur in a variety of tumor types, but also in developmental processes Furthermore, the pattern of histone modification appears to be a predicator of the risk of recurrence of human cancers. It is well known that hypermethylation represses transcription of the promoter sections of tumor-suppressor genes leading to gene silencing. However, hypomethylation also has been identified as a cause of oncogenesis. Furthermore, experiments concerning the mechanism of methylation and its control have led to the discovery of many regulatory enzymes and proteins. This review reports on methods developed for the detection of 5-hydroxymethylcytosine methylation at the 5-methylcytosine of protein domains in the CpG context compared to non-methylated DNA, histone modification, and microRNA change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Law, J. A., Jacobsen, S. E (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals.

  2. Docherty, S. J., Davis, O. S., Haworth, C. M. M., Plomin, R., & Mill, J. (2010). DNA methylation profiling using bisulfite-based epityping of pooled genomic DNA. Methods, 52, 255–258.

    PubMed  CAS  Google Scholar 

  3. Singal, R., & Ginder, G. D. (1999). DNA methylation. Blood, 93, 4059–4070.

    PubMed  CAS  Google Scholar 

  4. Laird, P. W. (2003). The power and the promise of DNA methylation markers. Nature Reviews Cancer, 3, 253–266.

    PubMed  CAS  Google Scholar 

  5. Baylin, S. B. (1997). Tying it all together: Epigenetics, genetics, cell cycle, and cancer. Science, 277, 1948–1949.

    PubMed  CAS  Google Scholar 

  6. Costello, J. F., & Plass, C. (2001). Methylation matters. Journal of Medical Genetics, 38, 285–303.

    PubMed  CAS  Google Scholar 

  7. Baylin, S. B. (1997). Tying it all together: Epigenetics, genetics, cell cycle, and cancer. Science, 277, 1948–1949.

    PubMed  CAS  Google Scholar 

  8. Cooper, D. N. & Krawczak, M. (1990). Human Genetics 83, 181–188.

  9. Bestor, T. H (1992). Embo G 11, 2611–2617.

    Google Scholar 

  10. Ehrlich, M., Zhang, X, Y. & Inamdar, N. M. (1990) Mutatation Research 238, 277–286.

  11. Bedford, M. T.& Van Helden, P. D. (1987) Cancer Research 47, 5274–5276.

    Google Scholar 

  12. Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. (1988) G Molecular Biology 203, 971–983.

    Google Scholar 

  13. Fremont, M., Siegmann, M., Gaulis, S., et al. (1997). Demethylation of DNA by purified chick embryo 5-methylcytosine-DNA glycosylase requires both protein and RNA. Nucleic Acids Research, 25, 2375–2380.

    PubMed  CAS  Google Scholar 

  14. Wade, P. A., Gegonne, A., Jones, P. L., et al. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23, 62–66.

    PubMed  CAS  Google Scholar 

  15. Rhee, I., Bachman, K. E., Park, B. H., et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416, 552–556.

    PubMed  CAS  Google Scholar 

  16. Paroush, Z., Keshet, I., Yisraeli, G. & Cedar, H. (1990). Cell 63, 1229–1237.

  17. Monk, M., Adams, R. L. & Rinaldi, A. (1991) Development 112, 189–192.

    Google Scholar 

  18. Yen, R. W., Campbell, T. A., Nelkin, B. D., Yu, J., Jel, D. W., Cumaraswamy, A., Lennon, G. G., Trask, B. J., Celano, P. & Baylin, S. B. (1992) Nucleic Acids Research 20, 2287–2291.

  19. Vairapandi, M. & Duker, N. J. (1993) Nucleic Acids Research 21, 5323-5327.

  20. Singer, S. J. & Riggs, A. D. (1993) In Jost, J. P. and Saluz, H. P. (ed.), DNA Methylation: molecular biology and biological significance. BirkhauserVerlag, Basel (Switzerland). pp. 358–384.

  21. Wu, J. C. & Santi, D. V. (1987) Journal Biological Chemistry 262, 4778–4786.

  22. Rideout, W.III., Coetzee, G. A., Olumi, A. F.& Jones, P. A. (1990) Science 249, 1288–1290.

  23. Das P. M., Rakesh, S. (2004) DNA Methylation and cancer.

  24. Lam, A. K. Y. (2000). Molecular biology of esophageal squamous cell carcinoma. Critical Reviews in Oncology/Hematology, 33, 71–90.

    PubMed  CAS  Google Scholar 

  25. Parkin, D. M., Baray, F., Ferlay, J., & Pisanl, P. (2001). Estimating the world cancer burden: Globocan 2000, International Journal of cancer, 94(2), 153–156.

    CAS  Google Scholar 

  26. Ducasse, M., & Brown, M. A. (2006). Epigenetic aberrations and cancer. Molecular Cancer, 5, 60.

    PubMed  Google Scholar 

  27. Ohki, L., Shimotake, N., Fujita, N., Jea, J., Ikegami, T., & Nakao, M. (2001). Solution structure of the methly - CpG binding domain of human MBD1 in complex with methylated DNA. Cell, 105, 487–497.

    PubMed  CAS  Google Scholar 

  28. Ng, H. H., & Bird, A. (1999). DNA methylation and chromatin modification. Current Opinion in Genetics & Development, 9, 158–163.

    CAS  Google Scholar 

  29. Costello, J. F. (2001). PlassC: Methylation matters. Journal of Medical Genetics, 38, 285–303.

    PubMed  CAS  Google Scholar 

  30. Ordway, J. M., & Curran, T. (2002). Methylation matters: Modeling a manageable genome. Cell Growth & Differentiation, 13, 149–162.

    CAS  Google Scholar 

  31. Flanagan, H. M., Munoz-Alegre, M., Henderson, S. M., Tang, T., Sun, P., Johnson, N., et al. (2009). Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Human Molecular Genetics, 18, 1332–1342.

    PubMed  CAS  Google Scholar 

  32. Moore, L. E., Pfeiffer, R. M., Poscablo, C., Real, F. X., Kogevinas, M., Silverman, D., et al. (2008). Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder cancer study: A case-control study. Lancet Oncol, 9, 359–366.

    PubMed  CAS  Google Scholar 

  33. Lim, U., Flood, A., Choi, S. W., Alanes, D., Cross, A. J., Schatzkinm, A., et al. (2008). Genomic methylation of leukocyte DNA in relation to colorectal adenoma among asymptomatic women. Gastroenterology, 134, 47–55.

    PubMed  Google Scholar 

  34. Widschwendter, M., Apostolidou, S., Raum, E., Rothenbacher, D., Fiegl, H., Menon, U., et al. (2008). Epigenotyping in peripheral blood cell DNA and breast cancer risk: A proof of principle study. PLoS ONE, 3, e2656.

    PubMed  Google Scholar 

  35. Ally, M. S., Al-Ghnaniem, R., & Pufulete, M. (2009). The relationship between gene-specific DNA methylation in leukocytes and normal colorectal mucosa in subjects with and without colorectal tumors. Cancer Epidemiology, Biomarkers and Prevention, 18, 922–928.

    PubMed  CAS  Google Scholar 

  36. Teschendorff, A. E., Menon, U., Gayther, S. A., Ramus, S. J., Gentry –Maharaj, A., Apostolidou, S., et al. (2009). An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS ONE, 4, e8274.

    PubMed  Google Scholar 

  37. Pedersen, K. S., Bamlet, W. R., Oberg, A. L., de Anderade, M., Matsumoto, M. E., Tang, H., et al. (2011). Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS ONE, 6, e18223.

    PubMed  CAS  Google Scholar 

  38. Kristensen, L. S., & Hansen, L. L. (2009). PCRP-based methods for detecting single-loci DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clinical Chemistry, 55, 1471–1483.

    PubMed  CAS  Google Scholar 

  39. Bibikova, M., & Fan, J. B. (2010). Genome-wide DNA methylation profiling. Wiley Interdisciplinary Reviews Systems Biology and Medicine, 2, 210–223.

    PubMed  CAS  Google Scholar 

  40. Gupta, R., Nagarajan, A., Wajapeyee, N. (2010) Advances in genome-wide DNA methylation analysis. Biotechniques 49, iii–xi.

  41. Bock, C., Tomazou, E. M., Brinkman, A. B., Meller, F., Simmer, F., Gu, H., et al. (2010). Quantitative comparison of genome-wide DNA methylation mapping technologies. Nature of Biotechnology, 28, 1106–1114.

    CAS  Google Scholar 

  42. Bibikova, M., Le, J., Barnes, B., Saedinia-Melnyk, S., Zhou, L., Shen, R., et al. (2009). Genome-wide DNA methylation profiling using infinium assay. Epigenomics, 1, 177–200.

    PubMed  CAS  Google Scholar 

  43. Yuasa, Y. (2010). Epigenetics in molecular epidemiology of cancer a new scope. Advances Genetics, 71, 211–235.

    CAS  Google Scholar 

  44. Brait, M., Ford, J. G., Papaiahgari, S., Garza, M. A., Lee, J. I., Loyo, M., et al. (2009). Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiology, Biomarkers and Prevention, 18, 2984–2991.

    PubMed  CAS  Google Scholar 

  45. Techendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Weisenberger, D. J., Shen, H., et al. (2010). Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Research, 20, 440–446.

    Google Scholar 

  46. Breitling, L. P., Yang, R., Korn, B., Burwinkel, B., & Brenner, H. (2011). Tobacco-smoking-related differential DNA methylation: 27 k discovery and replication. The American Journal of Human Genetics, 88, 450–457.

    CAS  Google Scholar 

  47. Terry, M. B., Delgado-Cruzata, L., Vin-Raviv, N., Wu, H. C., & Santella, R. M. (2011). DNA methylation in white blood cells: Association with risk factors in epidemiologic studies. Epigenetics, 6, 828–837.

    PubMed  CAS  Google Scholar 

  48. Terry, M. B., Ferris, J. S., Pilsner, R., Flom, J. D., Tehranifar, P., Santella, R. M., et al. (2008). Genomic New York City birth cohort. Cancer Epidemiology, Biomarkers and Prevention, 17, 2306–2310.

    PubMed  CAS  Google Scholar 

  49. Zhang, F. F., Morabia, A., Carroll, J., Gonzalez, K., Fulda, K., Kaur, M., et al. (2011). Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. The Journal of Nutrition, 141, 1165–1171.

    PubMed  CAS  Google Scholar 

  50. Wang, X., Zhu, H., Snieder, H., Su, S., Munn, D., Harshfield, G., et al. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Medicine, 8, 87.

    PubMed  Google Scholar 

  51. Zhang, F. F., Cardarelli, R., Zhang, F. F., Carroll, J., Fulda, K. G., Gonzalez, K., et al. (2011). Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics, 6, 293–299.

    PubMed  CAS  Google Scholar 

  52. Van der Auwera, I., Elst, H. J., Van Laere, S. J., Maes, H., Huget, P., van Dam, P., et al. (2009). The presence of circulating total DNA and methylated genes is associated with circulationg tumour cells in blood from breast cancer patients. British Journal of Cancer, 100, 1277–1286.

    PubMed  Google Scholar 

  53. Yazici, H., Terry, M. B., Cho, Y. H., Senie, R. T., Liao, Y., Andrulis, I., et al. Aberrant methylation of RASSFIA in plasma DNA before breast cancer diagnosis in the Breast Cancer Family Registry.

  54. Wang, Y. C., Yu, Z. H., Lio, C., Xu, L. Z., Yu, W., Lu, J., et al. (2008). Detection of RASSFIA promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World Journal of Gastroenterology, 14, 3074–3080.

    PubMed  CAS  Google Scholar 

  55. Ellinger, J., Haan, K., Heukamp, L. C., Kahl, P., Meller, S. C., et al. (2008). CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate, 68, 42–49.

    PubMed  CAS  Google Scholar 

  56. Lofton-Day, C., Model, F., Devos, T., Tetzner, R., Distler, J., Schuster, M., et al. (2008). DNA Methylation biomarkers for blood-based colorectal cancer screening. Clinical Chemistry, 54, 414–423.

    PubMed  CAS  Google Scholar 

  57. Gobel, G., Auer, D., Gaugg, I., Schneitter, A., Lesche, R., Muller-Holzner, E., et al. (2011). Prognostic significance of methylated RASSFIA and PITX2 genes in blood—and bone marrow plasma of breast cancer patients. Breast Cancer Research and Treatment, 130(1), 109–117.

    PubMed  Google Scholar 

  58. Sunami, E., Shinozaki, M., Higano, C. S., Wollman, R., Dorff, T. B., Tucker, S. J., et al. (2009). Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clinical Chemistry, 55, 559–567.

    PubMed  CAS  Google Scholar 

  59. Lee, B. B., Lee, E. J., Jung, E. H., Chun, H. K., Chang, D. K., Song, S. Y., et al. (2009). Aberrant methylation of APC, MGMT, RASSF2A, and Wif-l genes in plasma as a biomarker for early detection of colorectal cancer. Clinical Cancer Research, 15, 6185–6191.

    PubMed  CAS  Google Scholar 

  60. Kaaks, R., Stattin, P., Villar, S., Poetsch, A. R., Dossus, L., Nieters, A., et al. (2009). Insulin-like growth factor-II methylation status in lymphocyte DNA colon cancer risk in the Northern Sweden health and disease cohort. Cancer Research, 69, 5400–5405.

    PubMed  CAS  Google Scholar 

  61. Cash, H. L., Tao, L., Yuan, J. M., Marsit, C. J., Houseman, E. A., Xiang, Y. B., et al. (2012). LINE-l hypomethylation is associated with bladder cancer risk among non-smoking Chinese. International Journal of Cancer, 130(5), 1151–1159.

    CAS  Google Scholar 

  62. Wang, L., Aakre, J. A., Jiang, R., Marks, R. S., Eu, Y., Chen, J., et al. (2010). Methylation markers for small cell lung cancer in peripheral blood leukocyte DNA. Journal of Thoracic Oncology, 5, 778–785.

    PubMed  Google Scholar 

  63. Al-Moundhri, M. S., Al-Nabhani, M., Tarantini, L., Baccarelli, A., & Rusiecki, J. A. (2010). The prognostic significance of whole blood global and specific DNA methylation levels in gastric adenocarcinoma. PLoS ONE, 5, e15585.

    PubMed  CAS  Google Scholar 

  64. Tierling, S., Schuster, M., Tetzner, R., & Walter, J. (2010). A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation. Epigenetics and Chromatin, 3, 12.

    PubMed  Google Scholar 

  65. Radpour, R., Barekati, Z., Kohler, C., Lv, Q., Burki, N., Diesch, C., et al. (2011). Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS ONE, 6, e16080.

    PubMed  CAS  Google Scholar 

  66. De Vos, T., Tetzner, R., Model, F., Weiss, G., Schuster, M., Distler, J., et al. (2009). Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clinical Chemistry, 55, 1337–1346.

    Google Scholar 

  67. Melnikov, A. A., Scholtens, D., Talamonti, M. S., Bentrem, D. J., & Levenson, V. V. (2009). Methylation profile of circulating plasma DNA in patients with pancreatic cancer. Journal of Surgical Oncology, 99, 119–122.

    PubMed  Google Scholar 

  68. Cho, Y. H., Yazici, H., Wu, H. C., Terry, M. B., Gonzalez, K., Qu, M., et al. (2010). Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Research, 30, 2489–2496.

    PubMed  CAS  Google Scholar 

  69. Wilhelm, C. S., Kelsey, K. T., Butler, R., Plaza, S., Zens, M. S., et al. (2010). Implications of LINE1 methylation for bladder cancer risk in women. Clinical Cancer Research, 16, 1682–1689.

    PubMed  CAS  Google Scholar 

  70. Pinheiro, H., Bordeira-Carrico, R., Seixas, S., Carvalho, J., Senz, J., Oliveira, P., et al. (2010). Allele-specific CDHl downregulation and hereditary diffuse gastric cancer. Human Molecular Genetics, 19, 943–952.

    PubMed  CAS  Google Scholar 

  71. Wilson, A. S., Power, B. E., & Molloy, P. L. (2007). DNA hypomethylation and human diseases. Biochimica et Biophysica Acta, 1775(1), 138–162.

    PubMed  CAS  Google Scholar 

  72. Paredes, J., Albergaria, A., Oliveira, J. T., Jeronimo, C., Milanezi, F., & Schmitt, F. C. (2005). P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clinical Cancer Research, 11(16), 5869–5877.

    PubMed  CAS  Google Scholar 

  73. Liu, H., Liu, W., Eu, Y., et al. (2005). Loss of epigenetic control of synuclein-γ as a molecular indicator of metastasis in a wide range of human cancers. Cancer Research, 65(17), 7635–7643.

    PubMed  CAS  Google Scholar 

  74. Woodson, K., Mason, J., Choi, S. W., et al. (2001). Hypomethylation of p53 in peripheral blood DNA is associated with the development of lung cancer. Cancer Epidemiology, Biomarkers and Prevention, 10(1), 69–74.

    PubMed  CAS  Google Scholar 

  75. Callinan, P. A., & Feinberg, A. P. (2006). The emerging science of epigenomics. Human Molecular Genetics, 15(Spec. No.1), R95–R101.

    PubMed  CAS  Google Scholar 

  76. Yang, A. S., Estecio, M. R., Doshi, K., Kondo, Y., Tajara, E. H., & Issa, J. P. (2004). A simple method for edtrimating global DNA methylation using bisulfit PCR of repetitive DNA elements. Nucleic Acids Research, 32(3), e38.

    PubMed  Google Scholar 

  77. Ogino, S., Nosho, K., Kirkner, G. J., et al. (2008). A cohort study of tumoral line-1 hypomethylation and prognosis in colon cancer. Journal National Cancer Institute, 100(23), 1734–1738.

    CAS  Google Scholar 

  78. Irahara, N., Nosho, K., Baba, Y., et al. (2010). Precision of pyrosequencing assay to measure lin-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. The Journal of Molecular Diagnostics, 12(2), 177–183.

    PubMed  CAS  Google Scholar 

  79. Lee, Y., Ahn, C., Han, H., et al. (2003). The nuclear RNase III drosha initiates micron processing. Nature, 425(6956), 415–419.

    PubMed  CAS  Google Scholar 

  80. Lund, E., Guttinger, S., Calado, A., et al. (2004). Nuclear export of micron precursors. Science, 303(5654), 95–98.

    PubMed  CAS  Google Scholar 

  81. Nilsen, T. W. (2007). Mechanisms of micron-mediated gene regulation in animal cells. Trends of Genetics, 23(5), 243–249.

    CAS  Google Scholar 

  82. Wiemer, E. A. (2007). The role of micronas in cancer: no small matter. European Journal of Cancer, 43(10), 1529–1544.

    PubMed  CAS  Google Scholar 

  83. Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., et al. (2003). Reduced accumulation of specific micronas in colorectal neoplasia. Cancer Research, 1(12), 882–891.

    CAS  Google Scholar 

  84. Kitade, Y., & Akao, Y. (2010). Micronas and their therapeutic potential for human diseases micronas, mir-143 and -145 function as anti-oncomirs and the application of chemically modified mir-143 as an anti-cancer drug. Journal of Pharmacology Science, 114(3), 276–280.

    CAS  Google Scholar 

  85. Ng, E. K., Chong, W. W., Jin, H., et al. (2009). Differential expression of micronas in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut, 58(10), 1375–1381.

    PubMed  CAS  Google Scholar 

  86. Koga, Y., Yasunaga, M., & Takahashi, A. (2010). Microna expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prevention Research (Philadelphia, Pa.), 3(11), 1435–1442.

    Google Scholar 

  87. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., et al. (2001). Identification of novel genes coding for small expressed rnas. Science, 294(5543), 853–858.

    PubMed  CAS  Google Scholar 

  88. Wang, C. J., Zhoi, Z. G., Wang, L., et al. (2009). Clinicopathological significance of micronas-31,-143 and -145 expression in colorectal cancer. Disease Markers, 26(1), 27–34.

    PubMed  Google Scholar 

  89. Slaby, O., Svoboda, M., Fabian, P., et al. (2007). Altered expression of mir-21, mir-31, mir-143 and mir-145 is related to cliniccopathologic features of colorectal cancer [J]. Oncology, 72(5–6), 397–402.

    PubMed  CAS  Google Scholar 

  90. Wang, C. J., Stratmann, J., Zhou, Z. G., et al. (2010). Suppression of micron-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116colon cancer cells. BMC Cancer, 10, 616.

    PubMed  CAS  Google Scholar 

  91. Cheng, H., Zhang, L., Cogdell, D. E., et al. (2011). Circulating plasma mir-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE, 6(3), e17745.

    PubMed  CAS  Google Scholar 

  92. Schepeler, T., Reinert, J. T., Ostenfeld, M. S., et al. (2008). Diagnostic and prognostic micronas in stage II colon cancer. Cancer Research, 68(15), 6414–6424.

    Google Scholar 

  93. Schetter, A. J., Leung, S. Y., Sohn, J. J., et al. (2008). Microna expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299(4), 425–436.

    PubMed  CAS  Google Scholar 

  94. Volinia, S., Calin, G. A., Liu, C. G., et al. (2006). A micron expression signature of human solid tumors defines cancer gene targets [J]. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2257–2261.

    PubMed  CAS  Google Scholar 

  95. Longley, D. B., Harkin, D. P., & Johnston, P. G. (2003). 5-fluorouracil: Mechanisms of action and clinical strategies. Nature Review Cancer, 3(5), 330–338.

    CAS  Google Scholar 

  96. Schetter, A. J., Nguyen, G. H., Bowmen, E. D., et al. (2009). Association of inflammation-related and micron gene expression with cancer-specific mortality of colon adenocarcinoma. Clinical Cancer Research, 15(18), 5878–5887.

    PubMed  CAS  Google Scholar 

  97. Bandres, E., Agirre, X., Bitarte, N., et al. (2009). Epigenetic regulation of micron expression in colorectal cancer. International Journal of Cancer, 125(11), 2737–2743.

    CAS  Google Scholar 

  98. Balaguer, F., Link, A., Lozano, J. J., et al. (2010). Epigenetic silencing of mir-137 is an early event in colorectal carcinogenesis. Cancer Research, 70(16), 6609–6618.

    PubMed  CAS  Google Scholar 

  99. Saito, Y., Liang, G., Egger, G., et al. (2006). Specific activation of microrna-127 with downregulation of the proto-oncogene bcl6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 9(6), 435–443.

    PubMed  CAS  Google Scholar 

  100. Lujambio, A., Ropero, S., Ballestar, E., et al. (2007). Genetic unmasking of an epigenetically silenced microrna in human cancer cells [J]. Cancer Research, 67(4), 1424–1429.

    PubMed  CAS  Google Scholar 

  101. Berger, S. L. (2002). Histone modifications in transcriptional regulation. Current Opinion in Genetics & Development, 12(2), 142–148.

    CAS  Google Scholar 

  102. Barski, A., Cuddapah, S., Cui, K., et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4), 823–837.

    PubMed  CAS  Google Scholar 

  103. Litt, M. D., Simpson, M., Gaszner, M., et al. (2001). Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus [J]. Science, 293(5539), 2453–2455.

    PubMed  CAS  Google Scholar 

  104. Noma, L., Allis, C. D., & Grewal, Sl. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.

    PubMed  CAS  Google Scholar 

  105. Richon, V. M., Sandhof, T. W., Rifkind, R. A., et al. (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 10014–10019.

    PubMed  CAS  Google Scholar 

  106. Pruitt, K., Zinn, R. L., Ohm, J. E., et al. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genetics, 2(3), e40.

    PubMed  Google Scholar 

  107. Tsang, D. P. F., & Cheng, A. S. L. (2011). Epigenetic regulation of signaling pathways in cancer: Role of the histone methyltransferase EZH2. Journal of Gastroenterolhepatology, 26(1), 19–27.

    CAS  Google Scholar 

  108. Pelaez, I. M., Kalogeropoulou, M., Ferraro, A., et al. (2010). Oncogenic ras alters the global and gene-specific histone modification pattern during epithelial-mesenchymal transition in colorectal carcinoma during epithelial-mesenchymal transition in colorectal carcinoma cells. Biology International, 42(6), 911–920.

    Google Scholar 

  109. Baylin, S. B., & Herman, J. G. (2000). DNA hypermethylation in tumorigenesis: Epigenetics joins [J]. Trends Genetics, 16(4), 168–174.

    CAS  Google Scholar 

  110. Jones, P. A., & Laird, P. (1999). Cancer epigenetics comes of age. Nature Genetics, 21(2), 163–167.

    PubMed  CAS  Google Scholar 

  111. Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.

    PubMed  CAS  Google Scholar 

  112. Tamaru, H., & Selkar, E. R. (2001). A histone H3 methyltransferase controls DNA methylation in neurosporacrassa. Nature, 414(6861), 277–283.

    PubMed  CAS  Google Scholar 

  113. Jackson, J. P., Lindroth, A. M., Cao, X., et al. (2002). Control of cpnpg DNA methylation by the kryptonite histone H3 methyltransferase. Nature, 416(6880), 558–560.

    Google Scholar 

  114. Herman, J. G., Umar, A., Polyak, K., et al. (1998). Incidence and functional consequences of HMLH promoter hypermethylation in colorectal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6870–6875.

    PubMed  CAS  Google Scholar 

  115. Farhrner, J. A., Eguchi, S., Herman, J. G., et al. (2002). Dependence of histone modification and gene expression on DNA hypermethylation in cancer. Cancer Research, 62(24), 7213–7218.

    Google Scholar 

  116. Valenzuela, M. T., Galisteo, R., Zuluaga, A., Villalobos, M., Nunez, M, I., Oliver, F. J., et al. (2002). Assessing the use of p16INK4a promoter gene methylation in serum for detection of bladder cancer. European Urology 42: 622–628, discussion 628–630.

  117. Leung, W. K., To, K. F., Chu, E. S., Chan, M. W., Bai, A. H., Ng, E. K., et al. (2005). Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer. British Journal of Cancer, 92, 2190–2194.

    PubMed  CAS  Google Scholar 

  118. Wong, T. S., Man, M. W., Lam, A. K., Wei, W. I., Kwong, Y. L., & Yuen, A. P. (2003). The study of p16 and p15 gene methylation in head and neck squamous cell carcinoma and their quantitative evaluation in plasma by real-time PCR. European Journal of Cancer, 39, 1881–1887.

    PubMed  CAS  Google Scholar 

  119. Fujiwara, K., Fujimoto, N., Tabata, M., Nishii, K., Matsuo, K., Hotta, K., et al. (2005). Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clinical Cancer Research, 11, 1219–1225.

    PubMed  CAS  Google Scholar 

  120. Wong, T. S., Kwong, D. L., Sham, J. S., Wei, W. I., Kwong, Y. L., & Yuen, A. P. (2004). Quantitative plasma hypermethylation DNA markers of undifferentiated nasopharyngeal carcinoma. Clinical Cancer Research, 10, 2401–2406.

    PubMed  CAS  Google Scholar 

  121. Reibenwein, J., Pils, D., Horak, P., Tomicek, B., Goldner, G., Worel, N., et al. (2007). Promoter hypermethylation of GSTPI, AR, and 14-3-3 sigma in serum of prostate cancer patients and is clinical relevance. Prostate, 67, 427–432.

    PubMed  CAS  Google Scholar 

  122. Fiegl, H., Millinger, S., Mueller-Holzner, E., Marth, C., Ensinger, C., Berger, A., et al. (2005). Circulating tumor-specific DNA: A marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Research, 65, 1141–1145.

    PubMed  CAS  Google Scholar 

  123. Muller, H. M., Widschwendter, A., Fiegl, H., Ivarsson, L. M., Goebel, G., Perkmann, E., et al. (2003). DNA methylation in serum of breast cancer patients: An independents prognostic marker. Cancer Research, 63, 7641–7645.

    PubMed  Google Scholar 

  124. Dominguez, G., Carballido, J., Silva, J., Silva, J. M., Garcia, J. M., Menendez, J., et al. (2002). p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clinical Cancer Research, 5, 980–985.

    Google Scholar 

  125. Widschwendter, A., Muller, H. M., Fiegl, H., Ivarsson, L., Wirdemair, A., Muller-Holzner, E., et al. (2004). DNA methylation in serum and tumors of cervical cancer patients. Clinical Cancer Research, 10, 565–571.

    PubMed  CAS  Google Scholar 

  126. Widschwendter, A., Ivarsson, L., Blassnig, A., Muller, H. M., Fiegl, H., Wiedemair, A., et al. (2004). CDH1 and CDH13 methylation in serum is an independent prognostic marker in cervical cancer patients. International Journal of Cancer, 109, 163–166.

    CAS  Google Scholar 

  127. Wallner, M., Herbst, A., Behrens, A., Crispin, A., Stieber, P., Goke, B., et al. (2006). Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clinical Cancer Research, 12, 7347–7352.

    PubMed  CAS  Google Scholar 

  128. Hoffmann, A. C., Kaifi, J. T., Vallbohmer, D., Yekebas, E., Grimminger, P., Leers, J. M., et al. (2009). Lack of prognostic significance of serum DNA methylation of DAPK, MGMT, and GSTPI in patients with non-small cell lung cancer. Journal of Surgical Oncology, 100, 414–417.

    PubMed  CAS  Google Scholar 

  129. Kawakami, K., Brabender, J., Lord, R. V., Groshen, S., Greenwaid, B. D., Krasna, M. J., et al. (2000). Hypermethylation APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. Journal of National Cancer Research, 92, 1805–1811.

    CAS  Google Scholar 

  130. Tangkijvanich, P., Hourpai, N., Rattanatanyong, P., Wisedopas, N., Mahachai, V., & Multirangura, A. (2007). Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clinical Cancer Acta, 379, 127–133.

    CAS  Google Scholar 

  131. Ramirez, J. L., Rosell, R., Taron, M., Sanchez-Ronco, M., Alberola, V., Las de Penas, R., et al. (2005). 14-3-3 {sigma}methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group. Journal of Clinical Oncology, 23, 9105–9112.

    PubMed  CAS  Google Scholar 

  132. Gifford, G., Paul, J., Vasey, P. A., Kaye, S. B., & Brown, R. (2004). The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clinical Cancer Research, 10, 4420–4426.

    PubMed  CAS  Google Scholar 

  133. Bastian, P. J., Palapattu, G. S., Lin, X., Yegnasubrammanian, S., Mangold, L. A., Trock, B., et al. (2005). Preoperative serum DNA GSTPI CpG island hypermethylation and the risk of early prostatic-specific antigen recurrence following radical prostatectomy. Clinical Cancer Research, 11, 4037–4043.

    PubMed  CAS  Google Scholar 

  134. Hoque, M. O., Feng, Q., Toure, P., Dem, A., Critchlow, C. W., Hawes, S. E., et al. (2006). Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. Journal of Clinical Oncology, 24, 4262–4269.

    PubMed  CAS  Google Scholar 

  135. Zhang, Y. J., Wu, H. C., Shen, J., Ahsan, H., Tsai, W. Y., Yang, H. I., et al. (2007). Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clinical Cancer Research, 13, 2378–2384.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Samadani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhavan-Niaki, H., Samadani, A.A. DNA Methylation and Cancer Development: Molecular Mechanism. Cell Biochem Biophys 67, 501–513 (2013). https://doi.org/10.1007/s12013-013-9555-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9555-2

Keywords

Navigation