Skip to main content

Advertisement

Log in

Amyloid-Like Fibril Formation by Tachykinin Neuropeptides and Its Relevance to Amyloid β-Protein Aggregation and Toxicity

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Protein aggregation and amyloid formation are associated with both pathological conditions in humans such as Alzheimer’s disease and native functions such as peptide hormone storage in the pituitary secretory granules in mammals. Here, we studied amyloid fibrils formation by three neuropeptides namely physalaemin, kassinin and substance P of tachykinin family using biophysical techniques including circular dichroism, thioflavin T, congo red binding and microscopy. All these neuropeptides under study have significant sequence similarity with Aβ(25–35) that is known to form neurotoxic amyloids. We found that all these peptides formed amyloid-like fibrils in vitro in the presence of heparin, and these amyloids were found to be nontoxic in neuronal cells. However, the extent of amyloid formation, structural transition, and morphology were different depending on the primary sequences of peptide. When Aβ(25–35) and Aβ40 were incubated with each of these neuropeptides in 1:1 ratio, a drastic increase in amyloid growths were observed compared to that of individual peptides suggesting that co-aggregation of Aβ and these neuropeptides. The electron micrographs of these co-aggregates were dissimilar when compared with individual peptide fibrils further supporting the possible incorporation of these neuropeptides in Aβ amyloid fibrils. Further, the fibrils of these neuropeptides can seed the fibrils formation of Aβ40 and reduced the toxicity of preformed Aβ fibrils. The present study of amyloid formation by tachykinin neuropeptides is not only providing an understanding of the mechanism of amyloid fibril formation in general, but also offering plausible explanation that why these neuropeptide might reduce the cytotoxicity associated with Alzheimer’s disease related amyloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CR:

Congo red

ThT:

Thioflavin T

GAGs:

Glycosaminoglycans

CD:

Circular dichroism

EM:

Electron microscopy

AFM:

Atomic force microscopy

TFE:

Trifluoroethanol

DMEM:

Dulbecco’s modified Eagle’s medium

References

  1. Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75, 333–366.

    Article  PubMed  CAS  Google Scholar 

  2. Maji, S. K., Wang, L., Greenwald, J., & Riek, R. (2009). Structure–activity relationship of amyloid fibrils. FEBS Letters, 583, 2610–2617.

    Article  PubMed  CAS  Google Scholar 

  3. Tycko, R. (2006). Molecular structure of amyloid fibrils: Insights from solid-state NMR. Quarterly Reviews of Biophysics, 39, 1–55.

    Article  PubMed  CAS  Google Scholar 

  4. Klunk, W. E., Jacob, R. F., & Mason, R. P. (1999). Quantifying amyloid by Congo red spectral shift assay. Methods in Enzymology, 309, 285–305.

    Article  PubMed  CAS  Google Scholar 

  5. LeVine, H. (1999). Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods in Enzymology, 309, 274–284.

    Article  PubMed  CAS  Google Scholar 

  6. Sunde, M., & Blake, C. (1997). The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Advances in Protein Chemistry, 50, 123–159.

    Article  PubMed  CAS  Google Scholar 

  7. Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., & Blake, C. C. (1997). Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Journal of Molecular Biology, 273, 729–739.

    Article  PubMed  CAS  Google Scholar 

  8. Dobson, C. M. (1999). Protein misfolding, evolution and disease. Trends in Biochemical Sciences, 24, 329–332.

    Article  PubMed  CAS  Google Scholar 

  9. Huff, M. E., Balch, W. E., & Kelly, J. W. (2003). Pathological and functional amyloid formation orchestrated by the secretory pathway. Current Opinion in Structural Biology, 13, 674–682.

    Article  PubMed  CAS  Google Scholar 

  10. Fowler, D. M., Koulov, A. V., Alory-Jost, C., Marks, M. S., Balch, W. E., & Kelly, J. W. (2006). Functional amyloid formation within mammalian tissue. PLoS Biology, 4, e6.

    Article  PubMed  Google Scholar 

  11. Fowler, D. M., Koulov, A. V., Balch, W. E., & Kelly, J. W. (2007). Functional amyloid–from bacteria to humans. Trends in Biochemical Sciences, 32, 217–224.

    Article  PubMed  CAS  Google Scholar 

  12. Jacob, R., Anoop, A., Singh, P., & Maji, S. (2010). Native Functions of Amyloid. In D. A. Stein (Ed.), Protein aggregation (pp. 79–109). New York: Nova Science Publishers, Inc.

    Google Scholar 

  13. Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., et al. (2009). Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science, 325, 328–332.

    Article  PubMed  CAS  Google Scholar 

  14. Mankar, S., Anoop, A., Sen, S., & Maji, S. K. (2011). Nanomaterials: Amyloids reflect their brighter side. Nano Reviews, 2, 6032. doi:10.3402/nano.v2i0.6032.

    Article  Google Scholar 

  15. Gras, S. L. (2009). Surface- and solution-based assembly of amyloid fibrils for biomedical and nanotechnology applications. Advances in Chemical Engineering, 35, 161–209.

    Article  CAS  Google Scholar 

  16. Gras, S. L., Tickler, A. K., Squires, A. M., Devlin, G. L., Horton, M. A., Dobson, C. M., et al. (2008). Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials, 29, 1553–1562.

    Article  PubMed  CAS  Google Scholar 

  17. Gazit, E. (2007). Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chemical Society Reviews, 36, 1263–1269.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, S., Marini, D. M., Hwang, W., & Santoso, S. (2002). Design of nanostructured biological materials through self-assembly of peptides and proteins. Current Opinion in Chemical Biology, 6, 865–871.

    Article  PubMed  Google Scholar 

  19. Pernow, B. (1983). Substance P. Pharmacological Reviews, 35, 85–141.

    PubMed  CAS  Google Scholar 

  20. Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S., & Erspamer, V. (2002). The tachykinin peptide family. Pharmacological Reviews, 54, 285–322.

    Article  PubMed  CAS  Google Scholar 

  21. Schwyzer, R. (1987). Membrane-assisted molecular mechanism of neurokinin receptor subtype selection. EMBO Journal, 6, 2255–2259.

    PubMed  CAS  Google Scholar 

  22. Grace, C. R., & Cowsik, S. M. (2011). Solution conformation of non-mammalian tachykinin physalaemin in lipid micelles by NMR. Biopolymers, 96, 252–259.

    Article  PubMed  CAS  Google Scholar 

  23. Maggio, J. E. (1988). Tachykinins. Annual Review of Neuroscience, 11, 13–28.

    Article  PubMed  CAS  Google Scholar 

  24. Helke, C. J., Krause, J. E., Mantyh, P. W., Couture, R., & Bannon, M. J. (1990). Diversity in mammalian tachykinin peptidergic neurons: Multiple peptides, receptors, and regulatory mechanisms. FASEB Journal, 4, 1606–1615.

    PubMed  CAS  Google Scholar 

  25. Merighi, A., Polak, J. M., Gibson, S. J., Gulbenkian, S., Valentino, K. L., & Peirone, S. M. (1988). Ultrastructural studies on calcitonin gene-related peptide-, tachykinins- and somatostatin-immunoreactive neurones in rat dorsal root ganglia: Evidence for the colocalization of different peptides in single secretory granules. Cell and Tissue Research, 254, 101–109.

    Article  PubMed  CAS  Google Scholar 

  26. Ma, G. Q., Wang, B., Wang, H. B., Wang, Q., & Bao, L. (2008). Short elements with charged amino acids form clusters to sort protachykinin into large dense-core vesicles. Traffic, 9, 2165–2179.

    Article  PubMed  CAS  Google Scholar 

  27. Yankner, B. A., Duffy, L. K., & Kirschner, D. A. (1990). Neurotrophic and neurotoxic effects of amyloid β protein: Reversal by tachykinin neuropeptides. Science, 250, 279–282.

    Article  PubMed  CAS  Google Scholar 

  28. El-Agnaf, O. M., Irvine, G. B., Fitzpatrick, G., Glass, W. K., & Guthrie, D. J. (1998). Comparative studies on peptides representing the so-called tachykinin-like region of the Alzheimer Aβ peptide [Aβ(25-35)]. Biochemical Journal, 336(Pt 2), 419–427.

    PubMed  CAS  Google Scholar 

  29. Kowall, N. W., Beal, M. F., Busciglio, J., Duffy, L. K., & Yankner, B. A. (1991). An in vivo model for the neurodegenerative effects of β amyloid and protection by substance P. Proceedings of the National Academy of Science of the United States of America, 88, 7247–7251.

    Article  CAS  Google Scholar 

  30. Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., & Serrano, L. (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology, 22, 1302–1306.

    Article  PubMed  CAS  Google Scholar 

  31. Maurer-Stroh, S., Debulpaep, M., Kuemmerer, N., de la Paz, M. L., Martins, I. C., Reumers, J., et al. (2010). Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nature Methods, 7, 237–242.

    Article  PubMed  CAS  Google Scholar 

  32. Suk, J. Y., Zhang, F., Balch, W. E., Linhardt, R. J., & Kelly, J. W. (2006). Heparin accelerates gelsolin amyloidogenesis. Biochemistry, 45, 2234–2242.

    Article  PubMed  CAS  Google Scholar 

  33. Kisilevsky, R. (2000). Review: Amyloidogenesis—Unquestioned answers and unanswered questions. Journal of Structural Biology, 130, 99–108.

    Article  PubMed  CAS  Google Scholar 

  34. Yamamoto, S., Yamaguchi, I., Hasegawa, K., Tsutsumi, S., Goto, Y., Gejyo, F., et al. (2004). Glycosaminoglycans enhance the trifluoroethanol-induced extension of β2-microglobulin-related amyloid fibrils at a neutral pH. Journal of the American Society of Nephrology, 15, 126–133.

    Article  PubMed  CAS  Google Scholar 

  35. Cohlberg, J. A., Li, J., Uversky, V. N., & Fink, A. L. (2002). Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from α-synuclein in vitro. Biochemistry, 41, 1502–1511.

    Article  PubMed  CAS  Google Scholar 

  36. Supattapone, S. (2004). Prion protein conversion in vitro. Journal of Molecular Medicine, 82, 348–356.

    Article  PubMed  CAS  Google Scholar 

  37. Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, M., Smith, M. J., & Crowther, R. A. (1996). Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature, 383, 550–553.

    Article  PubMed  CAS  Google Scholar 

  38. Maji, S. K., Schubert, D., Rivier, C., Lee, S., Rivier, J. E., & Riek, R. (2008). Amyloid as a depot for the formulation of long-acting drugs. PLoS Biology, 6, e17.

    Article  PubMed  Google Scholar 

  39. Kolset, S. O., Prydz, K., & Pejler, G. (2004). Intracellular proteoglycans. Biochem Journal, 379, 217–227.

    Article  CAS  Google Scholar 

  40. Zanini, A., Giannattasio, G., Nussdorfer, G., Margolis, R. K., Margolis, R. U., & Meldolesi, J. (1980). Molecular organization of prolactin granules. II. Characterization of glycosaminoglycans and glycoproteins of the bovine prolactin matrix. Journal of Cell Biology, 86, 260–272.

    Article  PubMed  CAS  Google Scholar 

  41. Maji, S. K., Amsden, J. J., Rothschild, K. J., Condron, M. M., & Teplow, D. B. (2005). Conformational dynamics of amyloid β-protein assembly probed using intrinsic fluorescence. Biochemistry, 44, 13365–13376.

    Article  PubMed  CAS  Google Scholar 

  42. Lakowicz, J. R. (1999). Principles of fluorescence spectroscopy (2nd ed.). New York: Kluwer/Plenum.

    Google Scholar 

  43. Buck, M. (1998). Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Quarterly Reviews of Biophysics, 31, 297–355.

    Article  PubMed  CAS  Google Scholar 

  44. Fezoui, Y., & Teplow, D. B. (2002). Kinetic studies of amyloid β-protein fibril assembly—Differential effects of α-helix stabilization. Journal of Biological Chemistry, 277, 36948–36954.

    Article  PubMed  CAS  Google Scholar 

  45. Anderson, V. L., Ramlall, T. F., Rospigliosi, C. C., Webb, W. W., & Eliezer, D. (2010). Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 107, 18850–18855.

    Article  PubMed  CAS  Google Scholar 

  46. Munishkina, L. A., Phelan, C., Uversky, V. N., & Fink, A. L. (2003). Conformational behavior and aggregation of α-synuclein in organic solvents: Modeling the effects of membranes. Biochemistry, 42, 2720–2730.

    Article  PubMed  CAS  Google Scholar 

  47. Hardy, J., & Selkoe, D. J. (2002). Medicine—The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  48. Klein, W. L., Stine, W. B., Jr, & Teplow, D. B. (2004). Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiology of Aging, 25, 569–580.

    Article  PubMed  CAS  Google Scholar 

  49. Winner, B., Jappelli, R., Maji, S. K., Desplats, P. A., Boyer, L., Aigner, S., et al. (2011). In vivo demonstration that α-synuclein oligomers are toxic. Proceedings of the National Academy of Sciences of the United Sciences of America, 108, 4194–4199.

    Article  CAS  Google Scholar 

  50. Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., et al. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 300, 486–489.

    Article  PubMed  CAS  Google Scholar 

  51. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

    Article  PubMed  CAS  Google Scholar 

  52. Harper, J. D., & Lansbury, P. T., Jr. (1997). Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annual Review of Biochemistry, 66, 385–407.

    Article  PubMed  CAS  Google Scholar 

  53. Wright, C. F., Teichmann, S. A., Clarke, J., & Dobson, C. M. (2005). The importance of sequence diversity in the aggregation and evolution of proteins. Nature, 438, 878–881.

    Article  PubMed  CAS  Google Scholar 

  54. Han, H. Y., Weinreb, P. H., & Lansbury, P. T. (1995). The core Alzheimer’s peptide Nac forms amyloid fibrils which seed and are seeded by β-Amyloid—Is NAC a common trigger or target in neurodegenerative disease? Chemistry & Biology, 2, 163–169.

    Article  CAS  Google Scholar 

  55. Cherny, I., & Gazit, E. (2008). Amyloids: Not only pathological agents but also ordered nanomaterials. Angewandte Chemie (International ed. in English), 47, 4062–4069.

    Article  CAS  Google Scholar 

  56. Hamodrakas, S. J. (2011). Protein aggregation and amyloid fibril formation prediction software from primary sequence: Towards controlling the formation of bacterial inclusion bodies. FEBS Journal, 278, 2428–2435.

    Article  PubMed  CAS  Google Scholar 

  57. Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  58. Chou, P. Y., & Fasman, G. D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology and Related Areas of Molecular Biology, 47, 45–148.

    PubMed  CAS  Google Scholar 

  59. Monsellier, E., Ramazzotti, M., Taddei, N., & Chiti, F. (2010). A computational approach for identifying the chemical factors involved in the glycosaminoglycans-mediated acceleration of amyloid fibril formation. PLoS One, 5, e11363.

    Article  PubMed  Google Scholar 

  60. Valle-Delgado, J. J., Alfonso-Prieto, M., de Groot, N. S., Ventura, S., Samitier, J., Rovira, C., et al. (2010). Modulation of Aβ42 fibrillogenesis by glycosaminoglycan structure. FASEB Journal, 24, 4250–4261.

    Article  PubMed  CAS  Google Scholar 

  61. Bourgault, S., Solomon, J. P., Reixach, N., & Kelly, J. W. (2011). Sulfated glycosaminoglycans accelerate transthyretin amyloidogenesis by quaternary structural conversion. Biochemistry, 50, 1001–1015.

    Article  PubMed  CAS  Google Scholar 

  62. Meng, F., Abedini, A., Song, B., & Raleigh, D. P. (2007). Amyloid formation by pro-islet amyloid polypeptide processing intermediates: Examination of the role of protein heparan sulfate interactions and implications for islet amyloid formation in type 2 diabetes. Biochemistry, 46, 12091–12099.

    Article  PubMed  CAS  Google Scholar 

  63. Sadqi, M., Hernandez, F., Pan, U. M., Perez, M., Schaeberle, M. D., Avila, J., et al. (2002). α-helix structure in Alzheimer’s disease aggregates of tau-protein. Biochemistry, 41, 7150–7155.

    Article  PubMed  CAS  Google Scholar 

  64. Paci, E., Gsponer, J., Salvatella, X., & Vendruscolo, M. (2004). Molecular dynamics studies of the process of amyloid aggregation of peptide fragments of transthyretin. Journal of Molecular Biology, 340, 555–569.

    Article  PubMed  CAS  Google Scholar 

  65. Abedini, A., & Raleigh, D. P. (2009). A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Engineering, Design and Selection, 22, 453–459.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge IRCC (IIT Bombay), CSIR (37(1404)/10/EMR-11) and DST (SR/FR/LS-032/2009), Government of India for financial supports and Central SPM Facility (IRCC, IIT Bombay) for AFM imaging and SAIF (IIT Bombay) for electron microscopy. We thank Reeba S. Jacob, Shruti Sahay and A. Anoop for critical reading of the manuscript. We are also thankful to Prof. G. Krishnamoorthy (TIFR, Mumbai) and Mr. Prem Verma (Department of Physics, IIT Bombay) for their valuable help during AFM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir K. Maji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P.K., Maji, S.K. Amyloid-Like Fibril Formation by Tachykinin Neuropeptides and Its Relevance to Amyloid β-Protein Aggregation and Toxicity. Cell Biochem Biophys 64, 29–44 (2012). https://doi.org/10.1007/s12013-012-9364-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9364-z

Keywords

Navigation