Skip to main content
Log in

The Function and Regulatory Network of WhiB and WhiB-Like Protein from Comparative Genomics and Systems Biology Perspectives

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

whi genes, named after the mutations turning Streptomyces coelicolor colonies into white, exist largely in Actinomyces and Mycobacterium. whiB genes, a subclass of whi, involve in wide range of events, such as cell division, spore formation, nutrient starvation, pathogenesis, antibiotic resistance, and stress sense. To better understand the role of this family in physiology and pathology in the important pathogen—Mycobacterium tuberculosis, WhiB and WhiB-like proteins function and structures of were bioinformatically dissected. Seven WhiB proteins can be found in M. tuberculosis genome, most are highly conserved. Based on the data mining of published microarray profiling of wild type and mutants transcriptome response to diverse treatments, a regulatory network of whiB is established. Some findings from this network are obvious. WhiB2 and WhiB7 might be key nodes in drug resistance, WhiB3 might involve in the maintenance of redox homeostasis. These works provide new Mycobacterium persistence and virulence hypothesis for future experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chater, K. F. (1972). A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. Journal of General Microbiology, 72, 9–28.

    PubMed  CAS  Google Scholar 

  2. Denhengst, C., & Buttner, M. (2008). Redox control in actinobacteria. Biochimica et Biophysica Acta (BBA)—General Subjects, 1780, 1201–1216.

    Article  CAS  Google Scholar 

  3. Soliveri, J. A., Gomez, J., Bishai, W. R., & Chater, K. F. (2000). Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology, 146(Pt 2), 333–343.

    PubMed  CAS  Google Scholar 

  4. Alam, M. S., Garg, S. K., & Agrawal, P. (2009). Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS Journal, 276, 76–93.

    Article  PubMed  CAS  Google Scholar 

  5. Suhail Alam, M., & Agrawal, P. (2008). Matrix-assisted refolding and redox properties of WhiB3/Rv3416 of Mycobacterium tuberculosis H37Rv. Protein Expression and Purification, 61, 83–91.

    Article  PubMed  Google Scholar 

  6. Garg, S. K., Suhail Alam, M., Soni, V., Radha Kishan, K. V., & Agrawal, P. (2007). Characterization of Mycobacterium tuberculosis WhiB1/Rv3219 as a protein disulfide reductase. Protein Expression and Purification, 52, 422–432.

    Article  PubMed  CAS  Google Scholar 

  7. Jakimowicz, P. (2004). Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe–4S] cluster. Journal of Biological Chemistry, 280, 8309–8315.

    Article  PubMed  Google Scholar 

  8. Crack, J. C., Smith, L. J., Stapleton, M. R., Peck, J., Watmough, N. J., Buttner, M. J., et al. (2010). Mechanistic insight into the nitrosylation of the [4Fe–4S] cluster of WhiB-like proteins. Journal of American Chemical Society, 133(4), 1112–1121.

    Article  Google Scholar 

  9. Smith, L. J., Stapleton, M. R., Fullstone, G. J., Crack, J. C., Thomson, A. J., Le Brun, N. E., et al. (2010). Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron–sulfur cluster. Biochemistry Journal, 432, 417–427.

    Article  CAS  Google Scholar 

  10. Flardh, K., Findlay, K. C., & Chater, K. F. (1999). Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology, 145(Pt 9), 2229–2243.

    PubMed  CAS  Google Scholar 

  11. Soliveri, J., Vijgenboom, E., Granozzi, C., Plaskitt, K. A., & Chater, K. F. (1993). Functional and evolutionary implications of a survey of various actinomycetes for homologues of two Streptomyces coelicolor sporulation genes. Journal of General Microbiology, 139, 2569–2578.

    PubMed  CAS  Google Scholar 

  12. Shen, X. L., Dong, H. J., Hou, X. P., Guan, W. J., & Li, Y. Q. (2008). FtsY affects sporulation and antibiotic production by whiH in Streptomyces coelicolor. Current Microbiology, 56, 61–65.

    Article  PubMed  CAS  Google Scholar 

  13. Jakimowicz, D., Mouz, S., Zakrzewska-Czerwinska, J., & Chater, K. F. (2006). Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. Journal of Bacteriology, 188, 1710–1720.

    Article  PubMed  CAS  Google Scholar 

  14. Molle, V., Palframan, W. J., Findlay, K. C., & Buttner, M. J. (2000). WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). Journal of Bacteriology, 182, 1286–1295.

    Article  PubMed  CAS  Google Scholar 

  15. Gomez, J. E., & Bishai, W. R. (2000). whmD is an essential mycobacterial gene required for proper septation and cell division. Proceedings of National Academy of Sciences of the United States of America, 97, 8554–8559.

    Article  CAS  Google Scholar 

  16. Raghunand, T. R., & Bishai, W. R. (2006). Mapping essential domains of Mycobacterium smegmatis WhmD: insights into WhiB structure and function. Journal of Bacteriology, 188, 6966–6976.

    Article  PubMed  CAS  Google Scholar 

  17. Rybniker, J., Nowag, A., van Gumpel, E., Nissen, N., Robinson, N., Plum, G., et al. (2010). Insights into the function of the WhiB-like protein of mycobacteriophage TM4—a transcriptional inhibitor of WhiB2. Molecular Microbiology, 77, 642–657.

    Article  PubMed  CAS  Google Scholar 

  18. Choi, W. W., Park, S. D., Lee, S. M., Kim, H. B., Kim, Y., & Lee, H. S. (2009). The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum. FEMS Microbiology Letters, 290, 32–38.

    Article  PubMed  CAS  Google Scholar 

  19. Kim, T.-H., Park, J.-S., Kim, H.-J., Kim, Y., Kim, P., & Lee, H.-S. (2005). The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochemical and Biophysical Research Communications, 337, 757–764.

    Article  PubMed  CAS  Google Scholar 

  20. Geiman, D. E., Raghunand, T. R., Agarwal, N., & Bishai, W. R. (2006). Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrobial Agents and Chemotherapy, 50, 2836–2841.

    Article  PubMed  CAS  Google Scholar 

  21. Steyn, A. J., Collins, D. M., Hondalus, M. K., Jacobs, W. R., Jr, Kawakami, R. P., & Bloom, B. R. (2002). Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proceedings of National Academy of Sciences of the United States of America, 99, 3147–3152.

    Article  CAS  Google Scholar 

  22. Ehrt, S., & Schnappinger, D. (2009). Mycobacterial survival strategies in the phagosome: Defence against host stresses. Cellular Microbiology, 11, 1170–1178.

    Article  PubMed  CAS  Google Scholar 

  23. Shiloh, M. U., Manzanillo, P., & Cox, J. S. (2008). Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host & Microbe, 3, 323–330.

    Article  CAS  Google Scholar 

  24. Singh, A., Crossman, D. K., Mai, D., Guidry, L., Voskuil, M. I., Renfrow, M. B., et al. (2009). Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathogens, 5, e1000545.

    Article  PubMed  Google Scholar 

  25. Morris, R. P., Nguyen, L., Gatfield, J., Visconti, K., Nguyen, K., Schnappinger, D., et al. (2005). Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proceedings of National Academy of Sciences of the United States of America, 102, 12200–12205.

    Article  CAS  Google Scholar 

  26. Burian, J., Ramon-Garcia, S., Sweet, G., Gomez-Velasco, A., Av-Gay, Y., & Thompson, C. J. (2011). The mycobacterial transcriptional regulator whiB7 links redox homeostasis and intrinsic antibiotic resistance. Journal of Biological Chemistry, 287(1), 299–310.

    Article  PubMed  Google Scholar 

  27. Kang, S. H., Huang, J., Lee, H. N., Hur, Y. A., Cohen, S. N., & Kim, E. S. (2007). Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. Journal of Bacteriology, 189, 4315–4319.

    Article  PubMed  CAS  Google Scholar 

  28. Alspaugh, J. A., Pukkila-Worley, R., Harashima, T., Cavallo, L. M., Funnell, D., Cox, G. M., et al. (2002). Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryotic Cell, 1, 75–84.

    Article  PubMed  CAS  Google Scholar 

  29. Rickman, L., Scott, C., Hunt, D. M., Hutchinson, T., Menendez, M. C., Whalan, R., et al. (2005). A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Molecular Microbiology, 56, 1274–1286.

    Article  PubMed  CAS  Google Scholar 

  30. Qamra, R., Mande, S. C., Coates, A. R., & Henderson, B. (2005). The unusual chaperonins of Mycobacterium tuberculosis. Tuberculosis (Edinb), 85, 385–394.

    Article  CAS  Google Scholar 

  31. Rifat, D., Bishai, W. R., & Karakousis, P. C. (2009). Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. Journal of Infectious Diseases, 200, 1126–1135.

    Article  PubMed  CAS  Google Scholar 

  32. Primm, T. P., Andersen, S. J., Mizrahi, V., Avarbock, D., Rubin, H., & Barry, C. E., 3rd. (2000). The stringent response of Mycobacterium tuberculosis is required for long-term survival. Journal of Bacteriology, 182, 4889–4898.

    Article  PubMed  CAS  Google Scholar 

  33. Al-Attiyah, R., Madi, N., El-Shamy, A. S., Wiker, H., Andersen, P., & Mustafa, A. (2006). Cytokine profiles in tuberculosis patients and healthy subjects in response to complex and single antigens of Mycobacterium tuberculosis. FEMS Immunology and Medical Microbiology, 47, 254–261.

    Article  PubMed  CAS  Google Scholar 

  34. Manganelli, R., Provvedi, R., Rodrigue, S., Beaucher, J., Gaudreau, L., & Smith, I. (2004). Sigma factors and global gene regulation in Mycobacterium tuberculosis. Journal of Bacteriology, 186, 895–902.

    Article  PubMed  CAS  Google Scholar 

  35. Manganelli, R., Dubnau, E., Tyagi, S., Kramer, F. R., & Smith, I. (1999). Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Molecular Microbiology, 31, 715–724.

    Article  PubMed  CAS  Google Scholar 

  36. Samuel, L. P., Song, C. H., Wei, J., Roberts, E. A., Dahl, J. L., Barry, C. E., 3rd, et al. (2007). Expression, production and release of the Eis protein by Mycobacterium tuberculosis during infection of macrophages and its effect on cytokine secretion. Microbiology, 153, 529–540.

    Article  PubMed  CAS  Google Scholar 

  37. Agarwal, N., Raghunand, T. R., & Bishai, W. R. (2006). Regulation of the expression of whiB1 in Mycobacterium tuberculosis: Role of cAMP receptor protein. Microbiology, 152, 2749–2756.

    Article  PubMed  CAS  Google Scholar 

  38. Garg, S., Alam, M. S., Bajpai, R., Kishan, K. R., & Agrawal, P. (2009). Redox biology of Mycobacterium tuberculosis H37Rv: protein–protein interaction between GlgB and WhiB1 involves exchange of thiol-disulfide. BMC Biochemistry, 2009(10), 1.

    Article  Google Scholar 

  39. Beinert, H., Holm, R. H., & Munck, E. (1997). Iron–sulfur clusters: Nature’s modular, multipurpose structures. Science, 277, 653–659.

    Article  PubMed  CAS  Google Scholar 

  40. Jervis, A. J., Crack, J. C., White, G., Artymiuk, P. J., Cheesman, M. R., Thomson, A. J., et al. (2009). The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe–4S] to [2Fe–2S] conversion. Proceedings of National Academy of Sciences of the United States of America, 106, 4659–4664.

    Article  CAS  Google Scholar 

  41. Arjomandzadegan, M., Owlia, P., Ranjbar, R., Farazi, A. A., Sofian, M., Sadrnia, M., et al. (2011). Rapid and simple approach for identification of Mycobacterium tuberculosis and M. bovis by detection of regulatory gene whiB7. Acta Microbiologica et Immunologica Hungarica, 58, 65–74.

    Article  PubMed  CAS  Google Scholar 

  42. Li, T. M. S., & Fu, M. (2007). Genome-wide exploration of the drug action of capreomycin on Mycobacterium tuberculosis using Affymetrix oligonucleotide GeneChips. Infection, 2007(54), 277–284.

    Google Scholar 

Download references

Acknowledgments

This study was supported by National megaproject for key infectious disease (Grant No. 2012ZX10003-003), the Fundamental Research Funds for the Central Universities (Grant No. XDJK2009A003, XDJK2011D006), National natural science foundation (Grant No. 81071316), Excellent PhD thesis fellowship of southwest university (Grant Nos. kb2010017 and ky2011003), New Century Excellent Talents in Universities (NCET-11-). The authors are grateful for suggestions from Wang Xiao-zhen and Liao Guo-jian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, F., Long, Q. & Xie, J. The Function and Regulatory Network of WhiB and WhiB-Like Protein from Comparative Genomics and Systems Biology Perspectives. Cell Biochem Biophys 63, 103–108 (2012). https://doi.org/10.1007/s12013-012-9348-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9348-z

Keywords

Navigation