Skip to main content
Log in

Plasma Paraoxonase-1, Oxidized Low-Density Lipoprotein and Lipid Peroxidation Levels in Gout Patients

  • Translational Biomedical Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Gout patients have a high incidence of atherosclerotic coronary heart disease. Low serum paraoxonase (PON) activity is considered a risk factor for atherosclerosis. The relationships among paraoxonase-1 (PON1) activity, oxidative stress parameters, and atherosclerosis in gout is not known. Therefore, we determined the plasma levels of malondialdehyde (MDA), oxidized low-density lipoprotein (Ox-LDL), and activities of PON1/superoxide dismutase (SOD) activities in 49 gout patients (mean age 44.2 ± 7.0 years) and 42 healthy, age-matched controls (mean age 45.0 ± 9.3 years). PON1 was measured spectrophotometrically, MDA by thiobarbituric acid method, SOD by Griess reaction, and Ox-LDL by sandwich ELISA. Lipid and other biochemical parameters were determined by routine laboratory methods. In gout patients, PON1/SOD activities and MDA/Ox-LDL levels were 131.3 ± 25.3/75.3 ± 28.9 kU l−1 and 6.12 ± 1.67 nmol ml−1/690.1 ± 180.2 μg l−1, respectively. In controls, these were 172.5 ± 27.8/94.0 ± 26.3 kU l−1 and 4.10 ± 1.25 nmol ml−1/452.3 ± 152.1 μg l−1, respectively. Thus, in gout patients, there was a significant decrease in PON1 (P < 0.01) and SOD (P < 0.05) activities, and an increase in MDA (P < 0.01) and Ox-LDL (P < 0.01) levels compared with controls. PON1 activity correlated positively with SOD (P < 0.05), and negatively with MDA (P < 0.01) and Ox-LDL (P < 0.01). These results suggest that gout patients were in a state of oxidative stress and the protective effects of HDL against atherosclerosis maybe dependent on PON1 activity. These findings may explain in part the reported increase in cardiovascular mortality in gout patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, H. K., Mount, D. B., & Reginato, A. M. (2005). Pathogenesis of gout. Annals of Internal Medicine, 143, 499–516.

    CAS  PubMed  Google Scholar 

  2. Krishnan, E., Svendsen, K., Neaton, J. D., Grandits, G., & Kuller, L. H. (2008). Long-term cardiovascular mortality among middle-aged men with gout. Archives of Internal Medicine, 168, 1104–1110.

    Article  PubMed  Google Scholar 

  3. Takahashi, S., Yamamoto, T., Moriwaki, Y., Tsutsumi, Z., & Higashino, K. (1995). Increased concentrations of serum Lp(a) lipoprotein in patients with primary gout. Annals of the Rheumatic Diseases, 54, 90–93.

    Article  CAS  PubMed  Google Scholar 

  4. Mak, A., Ho, R. C. M., Tan, J. Y. S., et al. (2009). Atherogenic serum lipid profile is an independent predictor for gouty flares in patients with gouty arthropathy. Rheumatology, 48, 262–265.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, T. T., Lai, H. M., Chang, H. W., & Luo, S. F. (2005). Elevated serum homocysteine levels for gouty patients. Clinical Rheumatology, 24, 103–106.

    Article  PubMed  Google Scholar 

  6. Krishnan, E. (2010). Inflammation, oxidative stress and lipids: The risk triad for atherosclerosis in gout. Rheumatology, 3, 1–10.

    Google Scholar 

  7. Madamanchi, N. R., Vendrov, A., & Runge, M. S. (2005). Oxidative stress and vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 29–38.

    Article  CAS  PubMed  Google Scholar 

  8. Hahn, M., & Subbiah, M. T. (1994). Significant association of lipid peroxidation products with high density lipoproteins. Biochemistry and Molecular Biology International, 33, 699–704.

    CAS  PubMed  Google Scholar 

  9. Steinberg, D. (1997). Low density lipoprotein oxidation and its pathobiological significance. The Journal of Biological Chemistry, 272, 20963–20966.

    Article  CAS  PubMed  Google Scholar 

  10. Navab, M., Anantharamaiah, G. M., Reddy, S. T., Van Lenten, B. J., Ansell, B. J., & Fogelman, A. M. (2006). Mechanisms of disease: Proatherogenic HDL—an evolving field. Nature Clinical Practice Endocrinology & Metabolism, 2, 504–511.

    Article  CAS  Google Scholar 

  11. Mackness, M., Durrington, P., & Mackness, B. (2004). Paraoxonase-1 activity, concentration and genotype in cardiovascular disease. Current Opinion in Lipidology, 15, 399–404.

    Article  CAS  PubMed  Google Scholar 

  12. Mackness, B., Davies, G. K., Turkie, W., et al. (2001). Paraoxonase status in coronary heart disease: Are activity and concentration more important than genotype? Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1451–1457.

    Article  CAS  PubMed  Google Scholar 

  13. Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biology and Medicine, 11, 81–128.

    Article  CAS  PubMed  Google Scholar 

  14. Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. American Journal of Physiology, 271, C3424–3437.

    Google Scholar 

  15. Wallace, S. L., Robinson, H., Masi, A. T., Decker, J. L., McCarty, D. J., & Yu, T. F. (1997). Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis and Rheumatism, 20, 895–900.

    Article  Google Scholar 

  16. Ferre, N., Camps, J., Prats, E., et al. (2008). Serum paraoxonase activity: A new additional test for the improved evaluation of chronic liver damage. Clinical Chemistry, 48, 261–268.

    Google Scholar 

  17. Aviram, M., Rosenblat, M., Billecke, S., et al. (1999). Human serum paraoxonase (PON1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radical Biology and Medicine, 26, 892–904.

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura, K., Endo, H., & Kashiwazaki, S. (1987). Serum oxidation activities and rheumatoid arthritis. International Journal of Tissue Reactions, 9, 307–316.

    CAS  PubMed  Google Scholar 

  19. Mackness, B., Hunt, R., Durrington, P. N., & Mackness, M. I. (1997). Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 1233–1238.

    Article  CAS  PubMed  Google Scholar 

  20. Feingold, K. R., Memon, R. A., Moser, A. H., & Grunfeld, C. (1998). Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis, 139, 307–315.

    Article  CAS  PubMed  Google Scholar 

  21. Mackness, M. I., Arrol, S., & Durrington, P. N. (1991). Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Letters, 286, 152–154.

    Article  CAS  PubMed  Google Scholar 

  22. Inokuchi, T., Moriwaki, Y., Tsutsui, H., et al. (2006). Plasma interleukin (IL)-18 (interferon-gamma-inducing factor) and other inflammatory cytokines in patients with gouty arthritis and monosodium urate monohydrate crystal-induced secretion of IL-18. Cytokine, 33, 21–27.

    Article  CAS  PubMed  Google Scholar 

  23. Kumon, Y., Nakauchi, Y., Suehiro, T., et al. (2002). Proinflammatory cytokines but not acute phase serum amyloid A or C-reactive protein, downregulate paraoxonase 1 (PON1) expression by HepG2 cells. Amyloid, 9, 160–164.

    Article  CAS  PubMed  Google Scholar 

  24. James, R. W., & Deakin, S. P. (2004). The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. Free Radical Biology and Medicine, 37, 1986–1994.

    Article  CAS  PubMed  Google Scholar 

  25. Deakin, S., Leviev, I., Gomaraschi, M., Calabresi, L., Franceschini, G., & James, R. W. (2002). Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism. The Journal of Biological Chemistry, 277, 4301–4308.

    Article  CAS  PubMed  Google Scholar 

  26. Rashid, S., Uffelman, K. D., & Lewis, G. F. (2002). The mechanism of HDL lowering in hypertriglyceridemic, insulin-resistant states. Journal of Diabetes Complications, 16, 24–28.

    Article  Google Scholar 

  27. Roubenoff, R., Klag, M. J., Mead, L. A., Liang, K. Y., Seidler, A. J., & Hochberg, M. C. (1991). Incidence and risk factors for gout in white men. The Journal of the American Medical Association, 266, 3004–3007.

    Article  CAS  Google Scholar 

  28. Patterson, R. A., Horsley, E. T., & Leake, D. S. (2003). Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL: Important role of uric acid. Journal of Lipid Research, 44, 512–521.

    Article  CAS  PubMed  Google Scholar 

  29. Abuja, P. M. (1999). Ascorbate prevents prooxidant effects of urate in oxidation of human low density lipoprotein. FEBS Letters, 446, 305–308.

    Article  CAS  PubMed  Google Scholar 

  30. Muraoka, S., & Miura, T. (2003). Inhibition by uric acid of free radicals that damage biological molecules. Pharmacology and Toxicology, 93, 284–289.

    Article  CAS  PubMed  Google Scholar 

  31. Maples, K. R., & Mason, R. P. (1988). Free radical metabolite of uric acid. The Journal of Biological Chemistry, 263, 1709–1712.

    CAS  PubMed  Google Scholar 

  32. Santos, C. X., Anjos, E. I., & Augusto, O. (1999). Uric acid oxidation by peroxynitrite: Multiple reactions, free radical formation, and amplification of lipid oxidation. Archives of Biochemistry and Biophysics, 372, 285–294.

    Article  CAS  PubMed  Google Scholar 

  33. Sautin, Y. Y., Nakagawa, T., Zharikov, S., & Johnson, R. J. (2007). Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase mediated oxidative/nitrosative stress. American Journal of Physiology, 293, C584–C596.

    Article  CAS  PubMed  Google Scholar 

  34. Bartesaghi, S., Ferrer-Sueta, G., Peluffo, G., et al. (2007). Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids, 32, 501–515.

    Article  CAS  PubMed  Google Scholar 

  35. Bagnati, M., Perugini, C., Cau, C., Bordone, R., Albano, E., & Bellomo, G. (1999). When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: A study using uric acid. Biochemical Journal, 340, 143–152.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the Department of Health of Sichuan Province for the financial support (Grant #20090143), for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Liang Jiang.

Additional information

Xing-Liang Jiang and Min Li contributed equally to this work as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, XL., Li, M., Zhou, JG. et al. Plasma Paraoxonase-1, Oxidized Low-Density Lipoprotein and Lipid Peroxidation Levels in Gout Patients. Cell Biochem Biophys 61, 461–466 (2011). https://doi.org/10.1007/s12013-011-9221-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9221-5

Keywords

Navigation