Skip to main content
Log in

Targeting the Ubiquitin E3 Ligase MuRF1 to Inhibit Muscle Atrophy

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Progressive muscle wasting, also known as myopathy or muscle atrophy is a debilitating and life-threatening disorder. Myopathy is a pathological condition of many diseases including cancer, diabetes, COPD, and AIDS and is a natural consequence of inactivity and aging (sarcopenia). Muscle atrophy occurs when there is a net loss of muscle mass resulting in a change in the balance between protein synthesis and protein degradation. The ubiquitin pathway and specific ubiquitin pathway enzymes have been directly implicated in the progression of atrophy. The ubiquitin E3 ligase Muscle-specific RING Finger E3 ligase (MuRF1) is upregulated and increases protein degradation and muscle wasting in numerous muscle atrophy models. The inhibition of MuRF1 could be a novel mechanism to prevent or reverse muscle wasting associated with various pathologies. We screened a small molecule library for inhibitors to MuRF1 activity and identified P013222, an inhibitor of MuRF1 autoubiquitylation. Further, P013222 was shown to inhibit MuRF1-dependent substrate ubiquitylation, and was active in inhibiting MuRF1 in a cellular atrophy model. Thus MuRF1 can be targeted in a specific manner and produce positive results in cellular atrophy models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.

    Article  PubMed  CAS  Google Scholar 

  2. Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta, 1695(1–3), 55–72.

    PubMed  CAS  Google Scholar 

  3. Sun, L., & Chen, Z. J. (2004). The novel functions of ubiquitination in signaling. Current Opinion in Cell Biology, 16(2), 119–126.

    Article  PubMed  CAS  Google Scholar 

  4. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  PubMed  CAS  Google Scholar 

  5. Pickart, C. M., & Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Current Opinion in Chemical Biology, 8(6), 610–616.

    Article  PubMed  CAS  Google Scholar 

  6. Eddins, M. J., Varadan, R., Fushman, D., Pickart, C. M., & Wolberger, C. (2007). Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. Journal of Molecular Biology, 367(1), 204–211.

    Article  PubMed  CAS  Google Scholar 

  7. Amerik, A. Y., & Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta, 1695(1–3), 189–207.

    PubMed  CAS  Google Scholar 

  8. Chung, C. H., & Baek, S. H. (1999). Deubiquitinating enzymes: their diversity and emerging roles. Biochemical and Biophysical Research Communications, 266(3), 633–640.

    Article  PubMed  CAS  Google Scholar 

  9. D’Andrea, A., & Pellman, D. (1998). Deubiquitinating enzymes: a new class of biological regulators. Critical Reviews in Biochemistry and Molecular Biology, 33(5), 337–352.

    Article  PubMed  Google Scholar 

  10. Wilkinson, K. D. (2000). Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Seminars in Cell and Developmental Biology, 11(3), 141–148.

    Article  PubMed  CAS  Google Scholar 

  11. Wilkinson, K. D., & Hochstrasser, M. (1998). The deubiquitinating enzymes. In J. M. Peters, J. R. Harris, & D. Finley (Eds.), Ubiquitin and the biology of the cell (pp. 99–125). New York: Plenum Press.

    Google Scholar 

  12. Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.

    Article  PubMed  CAS  Google Scholar 

  13. Ardley, H. C. (2009). Ring finger ubiquitin protein ligases and their implication to the pathogenesis of human diseases. Current Pharmaceutical Design, 15(31), 3697–3715.

    Article  PubMed  CAS  Google Scholar 

  14. Chasapis, C. T., & Spyroulias, G. A. (2009). RING finger E(3) ubiquitin ligases: structure and drug discovery. Current Pharmaceutical Design, 15(31), 3716–3731.

    Article  PubMed  CAS  Google Scholar 

  15. Ciechanover, A. (2003). The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochemical Society Transactions, 31(2), 474–481.

    Article  PubMed  CAS  Google Scholar 

  16. Lakshmanan, M., Bughani, U., Duraisamy, S., Diwan, M., Dastidar, S., & Ray, A. (2008). Molecular targeting of E3 ligases–a therapeutic approach for cancer. Expert Opinion on Therapeutic Targets, 12(7), 855–870.

    Article  PubMed  CAS  Google Scholar 

  17. Bernassola, F., Karin, M., Ciechanover, A., & Melino, G. (2008). The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell, 14(1), 10–21.

    Article  PubMed  CAS  Google Scholar 

  18. Scheffner, M., & Staub, O. (2007). HECT E3s and human disease. BMC Biochemistry, 8(Suppl 1), S6.

    Article  PubMed  Google Scholar 

  19. Cardozo, T., & Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nature Reviews Molecular Cell Biology, 5(9), 739–751.

    Article  PubMed  CAS  Google Scholar 

  20. Petroski, M. D., & Deshaies, R. J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nature Reviews Molecular Cell Biology, 6(1), 9–20.

    Article  PubMed  CAS  Google Scholar 

  21. Attaix, D., Aurousseau, E., Combaret, L., Kee, A., Larbaud, D., Ralliere, C., et al. (1998). Ubiquitin–proteasome-dependent proteolysis in skeletal muscle. Reproduction, Nutrition, Development, 38(2), 153–165.

    Article  PubMed  CAS  Google Scholar 

  22. Attaix, D., Combaret, L., Tilignac, T., & Taillandier, D. (1999). Adaptation of the ubiquitin–proteasome proteolytic pathway in cancer cachexia. Molecular Biology Reports, 26(1–2), 77–82.

    Article  PubMed  CAS  Google Scholar 

  23. Lecker, S. H., Solomon, V., Mitch, W. E., & Goldberg, A. L. (1999). Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. Journal of Nutrition, 129(1S Suppl), 227S–237S.

    PubMed  CAS  Google Scholar 

  24. Solomon, V., & Goldberg, A. L. (1996). Importance of the ATP–ubiquitin–proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. The Journal of Biological Chemistry, 271(43), 26690–26697.

    Article  PubMed  CAS  Google Scholar 

  25. Jagoe, R. T., Lecker, S. H., Gomes, M., & Goldberg, A. L. (2002). Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB Journal, 16(13), 1697–1712.

    Article  PubMed  CAS  Google Scholar 

  26. Lecker, S. H., Jagoe, R. T., Gilbert, A., Gomes, M., Baracos, V., Bailey, J., et al. (2004). Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB Journal, 18(1), 39–51.

    Article  PubMed  CAS  Google Scholar 

  27. Gomes, M. D., Lecker, S. H., Jagoe, R. T., Navon, A., & Goldberg, A. L. (2001). Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14440–14445.

    Article  PubMed  CAS  Google Scholar 

  28. Combaret, L., Adegoke, O. A., Bedard, N., Baracos, V., Attaix, D., & Wing, S. S. (2005). USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. American Journal of Physiology Endocrinology and Metabolism, 288(4), E693–E700.

    Article  PubMed  CAS  Google Scholar 

  29. Bodine, S. C., Latres, E., Baumhueter, S., Lai, V. K., Nunez, L., Clarke, B. A., et al. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294(5547), 1704–1708.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen, S., Brault, J. J., Gygi, S. P., Glass, D. J., Valenzuela, D. M., Gartner, C., et al. (2009). During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. Journal of Cell Biology, 185(6), 1083–1095.

    Article  PubMed  CAS  Google Scholar 

  31. Clarke, B. A., Drujan, D., Willis, M. S., Murphy, L. O., Corpina, R. A., Burova, E., et al. (2007). The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metabolism, 6(5), 376–385.

    Article  PubMed  CAS  Google Scholar 

  32. Koyama, S., Hata, S., Witt, C. C., Ono, Y., Lerche, S., Ojima, K., et al. (2008). Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. Journal of Molecular Biology, 376(5), 1224–1236.

    Article  PubMed  CAS  Google Scholar 

  33. Mearini, G., Gedicke, C., Schlossarek, S., Witt, C. C., Kramer, E., Cao, P., et al. (2010). Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovascular Research, 85(2), 357–366.

    Article  PubMed  CAS  Google Scholar 

  34. Witt, S. H., Granzier, H., Witt, C. C., & Labeit, S. (2005). MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. Journal of Molecular Biology, 350(4), 713–722.

    Article  PubMed  CAS  Google Scholar 

  35. Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. International Journal of Biochemistry and Cell Biology, 37(10), 1974–1984.

    Article  PubMed  CAS  Google Scholar 

  36. Labeit, S., Kohl, C. H., Witt, C. C., Labeit, D., Jung, J., & Granzier, H. (2010). Modulation of muscle atrophy, fatigue and MLC phosphorylation by MuRF1 as indicated by hindlimb suspension studies on MuRF1-KO mice. Journal of Biomedicine and Biotechnology, 2010, 693741, 1–9.

    Google Scholar 

  37. Kudryashova, E., Kudryashov, D., Kramerova, I., & Spencer, M. J. (2005). Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. Journal of Molecular Biology, 354(2), 413–424.

    Article  PubMed  CAS  Google Scholar 

  38. Kudryashova, E., Wu, J., Havton, L. A., & Spencer, M. J. (2009). Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Human Molecular Genetics, 18(7), 1353–1367.

    Article  PubMed  CAS  Google Scholar 

  39. Lagirand-Cantaloube, J., Offner, N., Csibi, A., Leibovitch, M. P., Batonnet-Pichon, S., Tintignac, L. A., et al. (2008). The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO Journal, 27(8), 1266–1276.

    Article  PubMed  CAS  Google Scholar 

  40. Lagirand-Cantaloube, J., Cornille, K., Csibi, A., Batonnet-Pichon, S., Leibovitch, M. P., & Leibovitch, S. A. (2009). Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One, 4(3), e4973, 1–11.

    Google Scholar 

  41. Witt, C. C., Witt, S. H., Lerche, S., Labeit, D., Back, W., & Labeit, S. (2008). Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO Journal, 27(2), 350–360.

    Article  PubMed  CAS  Google Scholar 

  42. Fielitz, J., Kim, M. S., Shelton, J. M., Latif, S., Spencer, J. A., Glass, D. J., et al. (2007). Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. Journal of Clinical Investigation, 117(9), 2486–2495.

    Article  PubMed  CAS  Google Scholar 

  43. Fielitz, J., van Rooij, E., Spencer, J. A., Shelton, J. M., Latif, S., van der Nagel, R., et al. (2007). Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4377–4382.

    Article  PubMed  CAS  Google Scholar 

  44. Tisdale, M. J. (2000). Biomedicine. Protein loss in cancer cachexia. Science, 289(5488), 2293–2294.

    Article  PubMed  CAS  Google Scholar 

  45. Ding, X., Price, S. R., Bailey, J. L., & Mitch, W. E. (1997). Cellular mechanisms controlling protein degradation in catabolic states. Mineral and Electrolyte Metabolism, 23(3–6), 194–197.

    PubMed  CAS  Google Scholar 

  46. McElhinny, A. S., Kakinuma, K., Sorimachi, H., Labeit, S., & Gregorio, C. C. (2002). Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. Journal of Cell Biology, 157(1), 125–136.

    Article  PubMed  CAS  Google Scholar 

  47. Lee, S. W., Dai, G., Hu, Z., Wang, X., Du, J., & Mitch, W. E. (2004). Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin–proteasome systems by phosphatidylinositol 3 kinase. Journal of the American Society of Nephrology, 15(6), 1537–1545.

    Article  PubMed  CAS  Google Scholar 

  48. Inui, A. (2002). Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer Journal for Clinicians, 52(2), 72–91.

    Article  Google Scholar 

  49. Gordon, J. N., Green, S. R., & Goggin, P. M. (2005). Cancer cachexia. QJM, 98(11), 779–788.

    Article  PubMed  CAS  Google Scholar 

  50. Weyermann, P., Dallmann, R., Magyar, J., Anklin, C., Hufschmid, M., Dubach-Powell, J., et al. (2009). Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One, 4(3), e4774, 1–7.

    Google Scholar 

  51. Tan, B. H., & Fearon, K. C. (2008). Cachexia: prevalence and impact in medicine. Current Opinion in Clinical Nutrition and Metabolic Care, 11(4), 400–407.

    Article  PubMed  Google Scholar 

  52. Marblestone, J. G., Suresh Kumar, K. G., Eddins, M. J., Leach, C. A., Sterner, D. E., Mattern, M. R., et al. (2010). Novel approach for characterizing ubiquitin E3 ligase function. Journal of Biomolecular Screening, 15(10), 1220–1228.

    Article  PubMed  CAS  Google Scholar 

  53. Pickart, C. M., & Raasi, S. (2005). Controlled synthesis of polyubiquitin chains. Methods in Enzymology, 399, 21–36.

    Article  PubMed  CAS  Google Scholar 

  54. Scheffner, M., Nuber, U., & Huibregtse, J. M. (1995). Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature, 373(6509), 81–83.

    Article  PubMed  CAS  Google Scholar 

  55. Yano, C. L., Ventrucci, G., Field, W. N., Tisdale, M. J., & Gomes-Marcondes, M. C. (2008). Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes. BMC Cancer, 8, 24, 1–11.

    Google Scholar 

  56. Liao, J. W., Kang, J. J., Jeng, C. R., Chang, S. K., Kuo, M. J., Wang, S. C., et al. (2006). Cartap-induced cytotoxicity in mouse C2C12 myoblast cell line and the roles of calcium ion and oxidative stress on the toxic effects. Toxicology, 219(1–3), 73–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Eddins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eddins, M.J., Marblestone, J.G., Suresh Kumar, K.G. et al. Targeting the Ubiquitin E3 Ligase MuRF1 to Inhibit Muscle Atrophy. Cell Biochem Biophys 60, 113–118 (2011). https://doi.org/10.1007/s12013-011-9175-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9175-7

Keywords

Navigation