Skip to main content
Log in

Fluid Dynamics of Ventricular Filling in the Embryonic Heart

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The vertebrate embryonic heart first forms as a valveless tube that pumps blood using waves of contraction. As the heart develops, the atrium and ventricle bulge out from the heart tube, and valves begin to form through the expansion of the endocardial cushions. As a result of changes in geometry, conduction velocities, and material properties of the heart wall, the fluid dynamics and resulting spatial patterns of shear stress and transmural pressure change dramatically. Recent work suggests that these transitions are significant because fluid forces acting on the cardiac walls, as well as the activity of myocardial cells that drive the flow, are necessary for correct chamber and valve morphogenesis. In this article, computational fluid dynamics was used to explore how spatial distributions of the normal forces acting on the heart wall change as the endocardial cushions grow and as the cardiac wall increases in stiffness. The immersed boundary method was used to simulate the fluid-moving boundary problem of the cardiac wall driving the motion of the blood in a simplified model of a two-dimensional heart. The normal forces acting on the heart walls increased during the period of one atrial contraction because inertial forces are negligible and the ventricular walls must be stretched during filling. Furthermore, the force required to fill the ventricle increased as the stiffness of the ventricular wall was increased. Increased endocardial cushion height also drastically increased the force necessary to contract the ventricle. Finally, flow in the moving boundary model was compared to flow through immobile rigid chambers, and the forces acting normal to the walls were substantially different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Burggren, W. W. (2004). What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma. Physiological and Biochemical Zoology, 77, 333–345.

    Article  PubMed  Google Scholar 

  2. Hove, J. R. (2004). In vivo biofluid dynamic imaging in the developing zebrafish. Birth Defects Research, 72, 277–289.

    Article  PubMed  CAS  Google Scholar 

  3. Manasek, F. J. (1981). Determinants of heart shape in early embryos. Federation Proceedings, 40, 2011–2016.

    PubMed  CAS  Google Scholar 

  4. Manner, J. (2000). Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anatomical Record, 259, 248–262.

    Article  PubMed  CAS  Google Scholar 

  5. Taber, L. A., Lin, I.-E., & Clark, L. A. (2005). Mechanics of cardiac looping. Developmental Dynamics, 1, 42–50.

    Google Scholar 

  6. Moorman, A. F. M., & Christoffels, V. M. (2003). Cardiac chamber formation: development, genes, and evolution. Physiological Reviews, 83, 1223–1267.

    PubMed  CAS  Google Scholar 

  7. Satou, Y., & Satoh, N. (2006). Gene regulatory networks for the development, evolution of the chordate heart. Genes and Development, 20, 2634–2638.

    Article  PubMed  CAS  Google Scholar 

  8. Patterson, C. (2005). Even flow: shear cues vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1761–1762.

    Article  PubMed  CAS  Google Scholar 

  9. Forouhar, A. S., Liebling, M., Hickerson, A., Nasiraei-Moghaddam, A., Tsai, H.-J., Hove, J. R., et al. (2006). The embryonic vertebrate heart tube is a dynamic suction pump. Science, 312, 751–753.

    Article  PubMed  CAS  Google Scholar 

  10. Hove, J. R., Koster, R. W., Forouhar, A. S., Acevedo-Bolton, G., Fraser, S. E., & Gharib, M. (2003). Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature, 421, 172–177.

    Article  PubMed  CAS  Google Scholar 

  11. Misra, S., Fu, A. A., Puggioni, A., Karimi, K. M., Mandrekar, J. N., Glockner, J. F., et al. (2008). Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts. American Journal of Physiology: Heart and Circulatory Physiology, 294, 2219–2230.

    Article  Google Scholar 

  12. Thi, M. M., Iacobas, D. A., Iacobas, S., & Spray, D. C. (2007). Fluid shear stress upregulates vascular endothelial growth factor gene expression in osteoblasts. Annals of the New York Academy of Sciences, 1117, 73–81.

    Article  PubMed  CAS  Google Scholar 

  13. Ohno, M., Cooke, J. P., Dzau, V. J., & Gibbons, G. H. (1995). Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. Journal of Clinical Investigation, 95, 1363–1369.

    Article  PubMed  CAS  Google Scholar 

  14. Reckova, M., Rosengarten, C., de Almeida, A., Stanley, C. P., Wessels, A., Gourdie, R. G., et al. (2003). Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circulation Research, 93, 77–85.

    Article  PubMed  CAS  Google Scholar 

  15. Folkow, B. (1982). Physiological aspects of primary hypertension. Physiological Reviews, 62, 347–504.

    PubMed  CAS  Google Scholar 

  16. Mulvany, M. J. (1991). Are vascular abnormalities a primary cause or secondary consequence of hypertension? Hypertension, 18, 52–57.

    Google Scholar 

  17. Westerhof, N., Stergiopulos, N., & Noble, M. I. M. (2006). Snapshots of hemodynamics: an aid for clinical research and graduate education. New York: Springer-Verlag.

    Google Scholar 

  18. Bartman, T., Walsh, E. C., Wen, K. K., McKane, M., Ren, J., Alexander, J., et al. (2004). Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biology, 2, 673–681.

    Article  CAS  Google Scholar 

  19. Herrmann, C., Wray, J., Travers, F., & Barman, T. (1992). Effect of 2 3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry, 31, 12227–12232.

    Article  PubMed  CAS  Google Scholar 

  20. Mironov, V., Visconti, R. P., & Markwald, R. R. (2005). On the role of shear stress in cardiogenesis. Endothelium, 12, 259–261.

    Article  PubMed  Google Scholar 

  21. Thurston, G. B. (1972). Viscoelasticity of human blood. Biophysical Journal, 12, 1205–1217.

    Article  PubMed  CAS  Google Scholar 

  22. Thurston, G. B. (1979). Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. Biorheology, 16, 149–162.

    PubMed  CAS  Google Scholar 

  23. Chien, S., Usami, S., Taylor, H. M., Lundberg, J. L., & Gregersen, M. I. (1966). Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. Journal of Applied Physiology, 21, 81–87.

    PubMed  CAS  Google Scholar 

  24. Chmiel, H., & Walitza, E. (1980). On the rheology of blood and synovial. New York: Research Studies Press.

    Google Scholar 

  25. Chhabra, R. P., & Richardson, J. F. (2008). Non-Newtonian flow and applied rheology (2nd ed.). Oxford: Butterworth-Heinemann.

    Google Scholar 

  26. Moorman, A. F. M., Soufan, A. T., Hagoort, J., De Boer, P. A. J., & Christoffels, V. M. (2004). Development of the building plan of the heart. Annals of the New York Academy of Sciences, 1015, 171–181.

    Article  PubMed  Google Scholar 

  27. Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517.

    Article  Google Scholar 

  28. Peskin, C. S. (1977). Flow patterns around heart valves: a numerical method. Journal of Computational Physics, 25, 220–252.

    Article  Google Scholar 

  29. Peskin, C. S., & McQueen, D. M. (1996). Fluid dynamics of the heart and its valves. In F. R. Adler, M. A. Lewis, J. C. Dalton, & H. G. Othmer (Eds.), Case studies in mathematical modeling–ecology, physiology, and cell biology (pp. 309–337). New Jersey: Prentice Hall.

    Google Scholar 

  30. Jung, E. N., & Peskin, C. S. (2001). Two-dimensional simulations of valveless pumping using the immersed boundary method. SIAM Journal on Scientific Computing, 23, 19–45.

    Article  Google Scholar 

  31. Fogelson, A. L. (1984). A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. Journal of Computational Physics, 56, 111–134.

    Article  CAS  Google Scholar 

  32. Miller, L. A., & Peskin, C. S. (2005). A computational fluid dynamics of `clap and fling’ in the smallest insects. Journal of Experimental Biology, 208, 195–212.

    Article  PubMed  Google Scholar 

  33. Miller, L. A., & Peskin, C. S. (2004). When vortices stick: an aerodynamic transition in tiny insect flight. Journal of Experimental Biology, 207, 3073–3088.

    Article  PubMed  Google Scholar 

  34. Santhanakrishnan, A., Nguyen, N., Cox, J. G., & Miller, L. A. (2009). Flow within models of the vertebrate embryonic heart. Journal of Theoretical Biology, 259, 449–461.

    Article  PubMed  Google Scholar 

  35. Peskin, C. S., & Printz, B. F. (1993). Improved volume conservation in the computation of flows with immersed elastic boundaries. Journal of Computational Physics, 105, 33–46.

    Article  Google Scholar 

  36. Griffith, B. E., Hornung, R. D., McQueen, D. M., & Peskin, C. S. (2009). Parallel and adaptive simulation of cardiac fluid dynamics. In M. Chandra, S. Li, & X. Parashar (Eds.), Advanced computational infrastructures for parallel and distributed adaptive applications (chapter 7, pp. 105–130). New York: John Wiley and Sons.

    Google Scholar 

  37. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in FORTRAN: the art of scientific computing. Cambridge, UK: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Arvind Santhanakrisnan, Anil Shenoy, and Charles Peskin for meaningful discussions concerning the biofluid mechanics of heart development. The author would also like to thank the Applied Mathematics Fluids Lab Group at the University of North Carolina Chapel Hill for their input and intuition. This work was funded by BWF CASI Award ID # 1005782.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Miller.

Appendix

Appendix

The system of differentio-integral equations given by Eqs. 19 was solved on a rectangular grid with periodic boundary conditions in both directions. The Navier–Stokes equations were discretized on a fixed Eulerian grid, and the immersed boundaries were discretized on a Lagrangian array of points.

Consider the discretization of the equations that describe the force applied to the fluid as a result of the distance between the actual boundary and the tether points (Eq. 5). Let Δt be the duration of the time step, let Δs be the length of a boundary spatial step, let n be the time step index, and let s define the location of a boundary point in the Lagrangian framework (s = mΔs, m is an integer). Also, let \( {\mathbf{X}}^{n} \left( s \right) = {\mathbf{X}}\left( {s,n\Updelta t} \right),\,{\mathbf{Y}}^{n} \left( s \right) = {\mathbf{Y}}\left( {s,n\Updelta t} \right),\,{\mathbf{u}}^{n} \left( {\mathbf{x}} \right) = {\mathbf{u}}\left( {{\mathbf{x}},n\Updelta t} \right),\, \) and \( {\text{p}}^{n} \left( {\mathbf{x}} \right) = {\text{p}}\left( {{\mathbf{x}},n\Updelta t} \right) \). For any function ϕ(s), let (D s ϕ)(s) be defined by the following equation:

$$ \left( {D_{s} \phi } \right)\left( s \right) = {\frac{{\phi \left( {s + {\frac{{{{\Updelta}}s}}{2}}} \right) - \phi \left( {s - {\frac{{{{\Updelta}}s}}{2}}} \right)}}{{{{\Updelta}}s}}}. $$
(14)

Using these definitions, the force applied to the fluid by the target points, F targ, defined by Eq. 5, is discretized as follows:

$$ {\mathbf{F}}_{\text{targ}}^{n} = k_{\text{targ}} \left( {{\mathbf{Y}}^{n} \left( s \right) - {\mathbf{X}}^{n} \left( s \right)} \right). $$
(15)

The stretch force, F str, defined by Eq. 6, is discretized as follows:

$$ {\mathbf{F}}_{\text{str}}^{n} \left( s \right) = k_{\text{str}} D_{s} \left\{ {\left( {D_{s} {\mathbf{X}}^{n} \left( s \right) - 1} \right){\frac{{D_{s} {\mathbf{X}}^{n} \left( s \right)}}{{\left| {D_{s} {\mathbf{X}}^{n} \left( s \right)} \right|}}}} \right\}. $$
(16)

The external force applied to the fluid in order to drive the flow, f ext, defined in Eq. 7 and the desired flow profile upstream, u targ(x, t), defined by Eq. 8 can be discretized as follows:

$$ {\mathbf{f}}_{\text{ext}}^{n} = \left\{ {\begin{array}{*{20}c} { - k_{\text{ext}} \left( {{\mathbf{u}}^{n} - {\mathbf{u}}_{\text{targ}}^{n} } \right), \quad {\frac{l - d}{2}} \le jh \le {\frac{l + d}{2}},10 \le i \le 15} \\ {0, \quad {\text{otherwise}}} \\ \end{array} } \right. $$
(17)
$$ {\mathbf{u}}_{\text{targ}}^{n} \left( {i,j} \right) = \left[ {\begin{array}{*{20}c} {U_{ \max } \left( {1 - \left( {{\frac{0.5 - jh}{d/2}}} \right)^{2} } \right)} \\ 0 \\ \end{array} } \right] $$
(18)

where x = (ih, jh), i and j are integers, and h is the mesh width.

Finally, the total force applied to the fluid by the boundary is given by the following equation:

$$ {\mathbf{f}}^{n} = {\mathbf{f}}_{\text{str}}^{n} + {\mathbf{f}}_{\text{targ}}^{n} + {\mathbf{f}}_{\text{ext}}^{n}. $$
(19)

Since the Lagrangian array of boundary points does not necessarily coincide with the fixed Eulerian lattice used for the computation of the fluid velocities, a smoothed approximation to the Dirac delta function (Eqs. 3 and 4) is used to handle the fluid-boundary interaction. This approximate delta function applies a force from the boundary to the fluid and interpolates the fluid velocity. The approximate two-dimensional Dirac delta function, δ h , used in these calculations is given by the following equations:

$$ \begin{gathered} \delta_{h} \left( x \right) = h^{ - 2} \phi\left( {\frac{x}{h}} \right)\phi \left( {\frac{y}{h}} \right)\hfill \\ \phi \left( r \right) = \left\{ {\begin{array}{ll}{\frac{1}{4}\left( {1 + \cos \left( {{\frac{\pi r}{2}}} \right)}\right), \quad \left| r \right| \le 2} \\ {0, \quad{\text{otherwise}}}\\ \end{array} } \right. \hfill \\ \end{gathered} $$
(20)

where h is the size of the spatial step in the Eulerian grid and x = (x, y). Peskin and McQueen [29] have previously described this choice of the delta function. Other approximate delta functions have also been used successfully [27].

Using this choice of δ h , Eqs. 3and 4 can be discretized as follows:

$$ {\mathbf{f}}^{n} \left( {\mathbf{x}} \right) = \mathop \sum \limits_{s} {\mathbf{F}}^{n} \left( s \right)\delta_{h} \left( {{\mathbf{x}} - {\mathbf{X}}^{n} \left( s \right)} \right)\Updelta s + {\mathbf{f}}_{\text{ext}}^{n} \left( {\mathbf{x}} \right) $$
(21)
$$ \begin{gathered} {\mathbf{U}}^{n + 1} \left( s \right) = \mathop \sum \limits_{{\mathbf{x}}} {\mathbf{u}}^{n + 1} \left( {\mathbf{x}} \right)\delta_{h} \left( {{\mathbf{x}} - {\mathbf{X}}^{n} \left( s \right)} \right)h^{2} \hfill \\ {\frac{{{\mathbf{X}}^{n + 1} \left( s \right) - {\mathbf{X}}^{n} \left( s \right)}}{\Updelta t}} = {\mathbf{U}}^{n + 1} \hfill \\ \end{gathered} $$
(22)

where \( {{\Upsigma}}_{\text{s}} \) is the sum over all of the discrete collection of points of the form s = mΔs, and \( {{\Upsigma}}_{{\mathbf{x}}} \) is the sum over of the discrete points of the form x = (ih, jh), where i, j, and m are integers and h is the mesh width.

The final step is to discretize the incompressible Navier–Stokes equations (Eqs. 1 and 2). The method used here is implicitly defined as follows:

$$ \rho \left( {{\frac{{{\mathbf{u}}^{n + 1} - {\mathbf{u}}^{n} }}{\Updelta t}} + S_{h} \left( {{\mathbf{u}}^{n} } \right){\mathbf{u}}^{n} } \right) + D^{0} {\text{p}}^{n + 1} = \mu \mathop \sum \limits_{\alpha = 1}^{2} D_{\alpha }^{ + } D_{\alpha }^{ - } {\mathbf{u}}^{n + 1} + {\mathbf{F}}^{n} $$
(23)
$$ D^{0} \cdot {\mathbf{u}}^{n + 1} $$
(24)

where ρ is the density of the fluid and μ is the viscosity of the fluid. D 0 is the central difference approximation to \( \nabla. \) It is defined as follows:

$$ D^{0} = \left( {D_{1}^{0} ,D_{2}^{0} } \right) $$
(25)
$$ \left( {D_{\alpha }^{0} \phi } \right)\left( {\mathbf{x}} \right) = {\frac{{\phi \left( {{\mathbf{x}} + h{\mathbf{e}}_{\alpha } } \right) - \phi \left( {{\mathbf{x}} - h{\mathbf{e}}_{\alpha } } \right)}}{2h}} $$
(26)

where {e1, e2} is the standard basis of \( {\mathbf{R}}^{2}. \) The operators \( D_{\alpha }^{ \pm } \) are forward and backward difference approximations of \( \partial /\partial x_{\alpha }. \) They are defined as follows:

$$ \left( {D_{\alpha }^{ + } \phi } \right)\left( {\mathbf{x}} \right) = {\frac{{\phi \left( {{\mathbf{x}} + h{\mathbf{e}}_{\alpha } } \right) - \phi \left( {\mathbf{x}} \right)}}{h}} $$
(27)
$$ \left( {D_{\alpha }^{ - } \phi } \right)\left( {\mathbf{x}} \right) = {\frac{{\phi \left( {\mathbf{x}} \right) - \phi \left( {{\mathbf{x}} - h{\mathbf{e}}_{\alpha } } \right)}}{h}}. $$
(28)

Thus, the viscous term given as \( \mathop \sum \limits_{\alpha = 1}^{2} D_{\alpha }^{ + } D_{\alpha }^{ - } \) is a difference approximation to the Laplace operator.

Finally, S h (u) is a skew-symmetric difference operator which serves as a difference approximation of the nonlinear term \( {\mathbf{u}} \cdot \nabla {\mathbf{u}} \). This skew-symmetric difference operator is defined as follows:

$$ S_{h} \left( {\mathbf{u}} \right)\phi = \frac{1}{2}{\mathbf{u}} \cdot {\mathbf{D}}_{\text{h}}^{0} \phi + \frac{1}{2}{\mathbf{D}}_{\text{h}}^{0} \cdot \left( {{\mathbf{u}}\phi } \right). $$
(29)

Since the equations are linear in the unknowns u n+1 and p n+1, the Fast Fourier Transform (FFT) algorithm was used to solve for u n+1 and p n+1 from u n, p n, and \( {\mathbf{f}}^{n} \) [29, 37].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, L.A. Fluid Dynamics of Ventricular Filling in the Embryonic Heart. Cell Biochem Biophys 61, 33–45 (2011). https://doi.org/10.1007/s12013-011-9157-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9157-9

Keywords

Navigation