Skip to main content
Log in

The Structure and Function of Endophilin Proteins

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Members of the BAR domain protein superfamily are essential elements of cellular traffic. Endophilins are among the best studied BAR domain proteins. They have a prominent function in synaptic vesicle endocytosis (SVE), receptor trafficking and apoptosis, and in other processes that require remodeling of the membrane structure. Here, we discuss the role of endophilins in these processes and summarize novel insights into the molecular aspects of endophilin function. Also, we discuss phosphorylation of endophilins and how this and other mechanisms may contribute to disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Peter, B. J., Kent, H. M., Mills, I. G., Vallis, Y., Butler, P. J., Evans, P. R., et al. (2004). BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science, 303, 495–499.

    Article  PubMed  CAS  Google Scholar 

  2. Huttner, W. B., & Schmidt, A. (2000). Lipids, lipid modification and lipid-protein interaction in membrane budding and fission–insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Current Opinion in Neurobiology, 10, 543–551.

    Article  PubMed  CAS  Google Scholar 

  3. Huttner, W. B., & Schmidt, A. A. (2002). Membrane curvature: A case of endofeeling’. Trends in Cellular Biology, 12, 155–158.

    Article  CAS  Google Scholar 

  4. Reutens, A. T., & Begley, C. G. (2002). Endophilin-1: A multifunctional protein. International Journal of Biochemistry and Cell Biology, 34, 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  5. Farsad, K., Ringstad, N., Takei, K., Floyd, S. R., Rose, K., & De Camilli, P. (2001). Generation of high curvature membranes mediated by direct endophilin bilayer interactions. Journal of Cell Biology, 155, 193–200.

    Article  PubMed  CAS  Google Scholar 

  6. Gallop, J. L., Butler, P. J., & McMahon, H. T. (2005). Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature, 438, 675–678.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, H., & Antonarakis, S. E. (1997). The SH3D1A gene maps to human chromosome 21q22.1– > q22.2. Cytogenetics and Cell Genetics, 78, 213–215.

    Article  PubMed  CAS  Google Scholar 

  8. Micheva, K. D., Kay, B. K., & McPherson, P. S. (1997). Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. The Journal of Biological Chemistry, 272, 27239–27245.

    Article  PubMed  CAS  Google Scholar 

  9. Giachino, C., Lantelme, E., Lanzetti, L., Saccone, S., Bella Valle, G., & Migone, N. (1997). A novel SH3-containing human gene family preferentially expressed in the central nervous system. Genomics, 41, 427–434.

    Article  PubMed  CAS  Google Scholar 

  10. So, C. W., Caldas, C., Liu, M. M., Chen, S. J., Huang, Q. H., Gu, L. J., et al. (1997). EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 94, 2563–2568.

    Article  PubMed  CAS  Google Scholar 

  11. Cuddeback, S. M., Yamaguchi, H., Komatsu, K., Miyashita, T., Yamada, M., Wu, C., et al. (2001). Molecular cloning and characterization of Bif-1. A novel Src homology 3 domain-containing protein that associates with Bax. The Journal of Biological Chemistry, 276, 20559–20565.

    Article  PubMed  CAS  Google Scholar 

  12. Pierrat, B., Simonen, M., Cueto, M., Mestan, J., Ferrigno, P., & Heim, J. (2001). SH3GLB, a new endophilin-related protein family featuring an SH3 domain. Genomics, 71, 222–234.

    Article  PubMed  CAS  Google Scholar 

  13. Guichet, A., Wucherpfennig, T., Dudu, V., Etter, S., Wilsch-Brauniger, M., Hellwig, A., et al. (2002). Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction. EMBO Journal, 21, 1661–1672.

    Article  PubMed  CAS  Google Scholar 

  14. Verstreken, P., Kjaerulff, O., Lloyd, T. E., Atkinson, R., Zhou, Y., Meinertzhagen, I. A., et al. (2002). Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell, 109, 101–112.

    Article  PubMed  CAS  Google Scholar 

  15. Ringstad, N., Nemoto, Y., & De Camilli, P. (1997). The SH3p4/Sh3p8/SH3p13 protein family: Binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proceedings of the National Academy of Sciences of the United States of America, 94, 8569–8574.

    Article  PubMed  CAS  Google Scholar 

  16. So, C. W., Sham, M. H., Chew, S. L., Cheung, N., So, C. K., Chung, S. K., et al. (2000). Expression and protein-binding studies of the EEN gene family, new interacting partners for dynamin, synaptojanin and huntingtin proteins. Biochemical Journal, 348(Pt 2), 447–458.

    Article  PubMed  CAS  Google Scholar 

  17. Modregger, J., Schmidt, A. A., Ritter, B., Huttner, W. B., & Plomann, M. (2003). Characterization of Endophilin B1b, a brain-specific membrane-associated lysophosphatidic acid acyl transferase with properties distinct from endophilin A1. Journal of Biological Chemistry, 278, 4160–4167.

    Article  PubMed  CAS  Google Scholar 

  18. Hrabchak, C., Henderson, H., & Varmuza, S. (2007). A testis specific isoform of endophilin B1, endophilin B1t, interacts specifically with protein phosphatase-1c gamma2 in mouse testis and is abnormally expressed in PP1c gamma null mice. Biochemistry, 46, 4635–4644.

    Article  PubMed  CAS  Google Scholar 

  19. Chintapalli, V. R., Wang, J., & Dow, J. A. (2007). Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics, 39, 715–720.

    Article  PubMed  CAS  Google Scholar 

  20. De Gois, S., Jeanclos, E., Morris, M., Grewal, S., Varoqui, H., & Erickson, J. D. (2006). Identification of endophilins 1 and 3 as selective binding partners for VGLUT1 and their co-localization in neocortical glutamatergic synapses: Implications for vesicular glutamate transporter trafficking and excitatory vesicle formation. Cellular and Molecular Neurobiology, 26, 679–693.

    PubMed  Google Scholar 

  21. Fabian-Fine, R., Verstreken, P., Hiesinger, P. R., Horne, J. A., Kostyleva, R., Zhou, Y., et al. (2003). Endophilin promotes a late step in endocytosis at glial invaginations in Drosophila photoreceptor terminals. Journal of Neuroscience, 23, 10732–10744.

    PubMed  CAS  Google Scholar 

  22. Schuske, K. R., Richmond, J. E., Matthies, D. S., Davis, W. S., Runz, S., Rube, D. A., et al. (2003). Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron, 40, 749–762.

    Article  PubMed  CAS  Google Scholar 

  23. Vinatier, J., Herzog, E., Plamont, M. A., Wojcik, S. M., Schmidt, A., Brose, N., et al. (2006). Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis. Journal of Neurochemistry, 97, 1111–1125.

    Article  PubMed  CAS  Google Scholar 

  24. Aramaki, Y., et al. (2005). Direct interaction between metastasis-associated protein 1 and endophilin 3. FEBS Letters, 579, 3731–3736.

    Article  PubMed  CAS  Google Scholar 

  25. Hughes, A. C., Errington, R., Fricker-Gates, R., & Jones, L. (2004). Endophilin A3 forms filamentous structures that colocalise with microtubules but not with actin filaments. Brain Research. Molecular brain research, 128, 182–192.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, H., Chen, B., Xiong, H., Huang, Q. H., Zhang, Q. H., Wang, Z. G., et al. (2004). Functional contribution of EEN to leukemogenic transformation by MLL-EEN fusion protein. Oncogene, 23, 3385–3394.

    Article  PubMed  CAS  Google Scholar 

  27. Nonis, D., Schmidt, M. H., van de Loo, S., Eich, F., Dikic, I., Nowock, J., et al. (2008). Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cellular Signalling, 20, 1725–1739.

    Article  PubMed  CAS  Google Scholar 

  28. Ralser, M., Nonhoff, U., Albrecht, M., Lengauer, T., Wanker, E. E., Lehrach, H., et al. (2005). Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Human Molecular Genetics, 14, 2893–2909.

    Article  PubMed  CAS  Google Scholar 

  29. de Heuvel, E., Bell, A. W., Ramjaun, A. R., Wong, K., Sossin, W. S., & McPherson, P. S. (1997). Identification of the major synaptojanin-binding proteins in brain. The Journal of Biological Chemistry, 272, 8710–8716.

    Article  PubMed  Google Scholar 

  30. Wan, J., Cheung, A. Y., Fu, W. Y., Wu, C., Zhang, M., Mobley, W. C., et al. (2008). Endophilin B1 as a novel regulator of nerve growth factor/TrkA trafficking and neurite outgrowth. Journal of Neuroscience, 28, 9002–9012.

    Article  PubMed  CAS  Google Scholar 

  31. Qiao, Y., Yang, J. X., Zhang, X. D., Liu, Y., Zhang, J. C., Zong, S. D., et al. (2004). Characterization of rtSH3p13 gene encoding a development protein involved in vesicular traffic in spermiogenesis. Cellular Research, 14, 197–207.

    Article  CAS  Google Scholar 

  32. Karbowski, M., Jeong, S. Y., & Youle, R. J. (2004). Endophilin B1 is required for the maintenance of mitochondrial morphology. Journal of Cell Biology, 166, 1027–1039.

    Article  PubMed  CAS  Google Scholar 

  33. Li, S., et al. (2009). Interaction of SH3P13 and DYDC1 protein: A germ cell component that regulates acrosome biogenesis during spermiogenesis. European Journal of Cell Biology, 88, 509–520.

    Article  PubMed  CAS  Google Scholar 

  34. Sittler, A., Walter, S., Wedemeyer, N., Hasenbank, R., Scherzinger, E., Eickhoff, H., et al. (1998). SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell, 2, 427–436.

    Article  PubMed  CAS  Google Scholar 

  35. Sugiura, H., et al. (2004). Inhibitory role of endophilin 3 in receptor-mediated endocytosis. The Journal of Biological Chemistry, 279, 23343–23348.

    Article  PubMed  CAS  Google Scholar 

  36. Gallop, J. L., Jao, C. C., Kent, H. M., Butler, P. J., Evans, P. R., Langen, R., et al. (2006). Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO Journal, 25, 2898–2910.

    Article  PubMed  CAS  Google Scholar 

  37. Masuda, M., Takeda, S., Sone, M., Ohki, T., Mori, H., Kamioka, Y., et al. (2006). Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO Journal, 25, 2889–2897.

    Article  PubMed  CAS  Google Scholar 

  38. Weissenhorn, W. (2005). Crystal structure of the endophilin-A1 BAR domain. Journal of Molecular Biology, 351, 653–661.

    Article  PubMed  CAS  Google Scholar 

  39. Chen, Y., Deng, L., Maeno-Hikichi, Y., Lai, M., Chang, S., Chen, G., et al. (2003). Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell, 115, 37–48.

    Article  PubMed  CAS  Google Scholar 

  40. Kaneko, T., Li, L., & Li, S. S. (2008). The SH3 domain–a family of versatile peptide- and protein-recognition module. Front Bioscience, 13, 4938–4952.

    Article  CAS  Google Scholar 

  41. Loll, P. J., Swain, E., Chen, Y., Turner, B. T., & Zhang, J. F. (2008). Structure of the SH3 domain of rat endophilin A2. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 64, 243–246.

    Article  PubMed  CAS  Google Scholar 

  42. Gao, Y. G., Yan, X. Z., Song, A. X., Chang, Y. G., Gao, X. C., Jiang, N., et al. (2006). Structural insights into the specific binding of huntingtin proline-rich region with the SH3 and WW domains. Structure, 14, 1755–1765.

    Article  PubMed  CAS  Google Scholar 

  43. Yam, J. W., Jin, D. Y., So, C. W., & Chan, L. C. (2004). Identification and characterization of EBP, a novel EEN binding protein that inhibits Ras signaling and is recruited into the nucleus by the MLL-EEN fusion protein. Blood, 103, 1445–1453.

    Article  PubMed  CAS  Google Scholar 

  44. Jao, C. C., Hegde, B. G., Gallop, J. L., Hegde, P. B., McMahon, H. T., Haworth, I. S., Langen, R. (2010). Roles of amphipathic helices and the BAR domain of endophilin in membrane curvature generation. The Journal of Biological Chemistry, 285, 20164–20170.

    Article  PubMed  CAS  Google Scholar 

  45. Schmidt, A., & Huttner, W. B. (1998). Biogenesis of synaptic-like microvesicles in perforated PC12 cells. Methods, 16, 160–169.

    Article  PubMed  CAS  Google Scholar 

  46. Gad, H., et al. (2000). Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron, 27, 301–312.

    Article  PubMed  CAS  Google Scholar 

  47. Liu, Y., & Bankaitis, V. A. (2010). Phosphoinositide phosphatases in cell biology and disease. Progress in Lipid Research, 49, 201–217.

    Article  PubMed  CAS  Google Scholar 

  48. Mettlen, M., Pucadyil, T., Ramachandran, R., & Schmid, S. L. (2009). Dissecting dynamin’s role in clathrin-mediated endocytosis. Biochemical Society Transactions, 37, 1022–1026.

    Article  PubMed  CAS  Google Scholar 

  49. Wu, Y., Matsui, H., & Tomizawa, K. (2009). Amphiphysin I and regulation of synaptic vesicle endocytosis. Acta Medica Okayama, 63, 305–323.

    PubMed  CAS  Google Scholar 

  50. Leventis, P. A., Chow, B. M., Stewart, B. A., Iyengar, B., Campos, A. R., & Boulianne, G. L. (2001). Drosophila Amphiphysin is a post-synaptic protein required for normal locomotion but not endocytosis. Traffic, 2, 839–850.

    Article  PubMed  CAS  Google Scholar 

  51. Razzaq, A., Robinson, I. M., McMahon, H. T., Skepper, J. N., Su, Y., Zelhof, A. C., et al. (2001). Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes and Development, 15, 2967–2979.

    Article  PubMed  CAS  Google Scholar 

  52. Zelhof, A. C., Bao, H., Hardy, R. W., Razzaq, A., Zhang, B., & Doe, C. Q. (2001). Drosophila Amphiphysin is implicated in protein localization and membrane morphogenesis but not in synaptic vesicle endocytosis. Development, 128, 5005–5015.

    PubMed  CAS  Google Scholar 

  53. Ringstad, N., Gad, H., Low, P., Di Paolo, G., Brodin, L., Shupliakov, O., et al. (1999). Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron, 24, 143–154.

    Article  PubMed  CAS  Google Scholar 

  54. Andersson, F., Low, P., & Brodin, L. (2010). Selective perturbation of the BAR domain of endophilin impairs synaptic vesicle endocytosis. Synapse, 64, 556–560.

    Article  PubMed  CAS  Google Scholar 

  55. Ferguson, S. M., et al. (2009). Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Developemental Cell, 17, 811–822.

    Article  CAS  Google Scholar 

  56. Kessels, M. M., & Qualmann, B. (2004). The syndapin protein family: Linking membrane trafficking with the cytoskeleton. Journal of Cell Science, 117, 3077–3086.

    Article  PubMed  CAS  Google Scholar 

  57. Rao, Y., Ma, Q., Vahedi-Faridi, A., Sundborger, A., Pechstein, A., Puchkov, D., et al. (2010). Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation. Proceedings of the National Academy of Sciences of the United States of America, 107, 8213–8218.

    Article  PubMed  CAS  Google Scholar 

  58. Wang, Q., Navarro, M. V., Peng, G., Molinelli, E., Goh, S. L., Judson, B. L., et al. (2009). Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proceedings of the National Academy of Sciences of the United States of America, 106, 12700–12705.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, Q., Kaan, H. Y., Hooda, R. N., Goh, S. L., & Sondermann, H. (2008). Structure and plasticity of endophilin and sorting nexin 9. Structure, 16, 1574–1587.

    Article  PubMed  CAS  Google Scholar 

  60. Mizuno, N., Jao, C. C., Langen, R., & Steven, A. C. (2010). Multiple modes of endophilin-mediated conversion of lipid vesicles into coated tubes: Implications for synaptic endocytosis. The Journal of Biological Chemistry, 285, 23351–23358.

    Article  PubMed  CAS  Google Scholar 

  61. Gallop, J. L., & McMahon, H. T. (2005). BAR domains and membrane curvature: Bringing your curves to the BAR. Biochemical Society Symposium, 72, 223–231.

    PubMed  CAS  Google Scholar 

  62. Varkey, J., et al. (2010). Membrane curvature induction and tubulation is a common feature of synucleins and apolipoproteins. The Journal of Biological Chemistry, 285, 32486–32493.

    Article  PubMed  CAS  Google Scholar 

  63. Suresh, S., & Edwardson, J. M. (2010). The endophilin N-BAR domain perturbs the structure of lipid bilayers. Biochemistry, 49, 5766–5771.

    Article  PubMed  CAS  Google Scholar 

  64. Bhatia, V. K., Madsen, K. L., Bolinger, P. Y., Kunding, A., Hedegard, P., Gether, U., et al. (2009). Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO Journal, 28, 3303–3314.

    Article  PubMed  CAS  Google Scholar 

  65. Madsen, K. L., Bhatia, V. K., Gether, U., & Stamou, D. (2010). BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Letters, 584, 1848–1855.

    Article  PubMed  CAS  Google Scholar 

  66. Jung, A. G., Labarerra, C., Jansen, A. M., Qvortrup, K., Wild, K., & Kjaerulff, O. (2010). A mutational analysis of the endophilin-A N-BAR domain performed in living flies. PLoS One, 5, e9492.

    Article  PubMed  CAS  Google Scholar 

  67. He, L., & Wu, L. G. (2007). The debate on the kiss-and-run fusion at synapses. Trends in Neuroscience, 30, 447–455.

    Article  CAS  Google Scholar 

  68. Kjaerulff, O., Verstreken, P., & Bellen, H. J. (2002). Synaptic vesicle retrieval: Still time for a kiss. Nature Cell Biology, 4, E245–E248.

    Article  PubMed  CAS  Google Scholar 

  69. Dickman, D. K., Horne, J. A., Meinertzhagen, I. A., & Schwarz, T. L. (2005). A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell, 123, 521–533.

    Article  PubMed  CAS  Google Scholar 

  70. Verstreken, P., Koh, T. W., Schulze, K. L., Zhai, R. G., Hiesinger, P. R., Zhou, Y., et al. (2003). Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron, 40, 733–748.

    Article  PubMed  CAS  Google Scholar 

  71. Doherty, G. J., & McMahon, H. T. (2009). Mechanisms of endocytosis. Annual Review of Biochemistry, 78, 857–902.

    Article  PubMed  CAS  Google Scholar 

  72. Cole, C., Barber, J. D., & Barton, G. J. (2008). The Jpred 3 secondary structure prediction server. Nucleic Acids Research, 36, W197–W201.

    Article  PubMed  CAS  Google Scholar 

  73. Kim, M. S., Yoo, N. J., & Lee, S. H. (2008). Somatic mutation of pro-cell death Bif-1 gene is rare in common human cancers. APMIS, 116, 939–940.

    Article  PubMed  Google Scholar 

  74. Kumarswamy, R., & Chandna, S. (2009). Putative partners in Bax mediated cytochrome-c release: ANT, CypD, VDAC or none of them? Mitochondrion, 9, 1–8.

    Article  PubMed  CAS  Google Scholar 

  75. Takahashi, Y., Karbowski, M., Yamaguchi, H., Kazi, A., Wu, J., Sebti, S. M., et al. (2005). Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Molecular and Cellular Biology, 25, 9369–9382.

    Article  PubMed  CAS  Google Scholar 

  76. Etxebarria, A., Terrones, O., Yamaguchi, H., Landajuela, A., Landeta, O., Antonsson, B., et al. (2009). Endophilin B1/Bif-1 stimulates BAX activation independently from its capacity to produce large scale membrane morphological rearrangements. The Journal of Biological Chemistry, 284, 4200–4212.

    Article  PubMed  CAS  Google Scholar 

  77. Kundu, M., & Thompson, C. B. (2008). Autophagy: Basic principles and relevance to disease. Annual Review of Pathology, 3, 427–455.

    Article  PubMed  CAS  Google Scholar 

  78. Takahashi, Y., et al. (2007). Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biology, 9, 1142–1151.

    Article  PubMed  CAS  Google Scholar 

  79. Takahashi, Y., Meyerkord, C. L., & Wang, H. G. (2009). Bif-1/endophilin B1: A candidate for crescent driving force in autophagy. Cell Death and Differentiation, 16, 947–955.

    Article  PubMed  CAS  Google Scholar 

  80. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  81. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y., & Dikic, I. (2002). Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature, 416, 183–187.

    Article  PubMed  CAS  Google Scholar 

  82. Petrelli, A., Gilestro, G. F., Lanzardo, S., Comoglio, P. M., Migone, N., & Giordano, S. (2002). The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature, 416, 187–190.

    Article  PubMed  CAS  Google Scholar 

  83. Sorkin, A., & von Zastrow, M. (2009). Endocytosis and signalling: Intertwining molecular networks. Nature Reviews. Molecular Cell Biology, 10, 609–622.

    Article  PubMed  CAS  Google Scholar 

  84. Lua, B. L., & Low, B. C. (2005). Activation of EGF receptor endocytosis and ERK1/2 signaling by BPGAP1 requires direct interaction with EEN/endophilin II and a functional RhoGAP domain. Journal of Cell Science, 118, 2707–2721.

    Article  PubMed  CAS  Google Scholar 

  85. Clayton, E. L., & Cousin, M. A. (2009). The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. Journal of Neurochemistry, 111, 901–914.

    Article  PubMed  CAS  Google Scholar 

  86. Lee, S. Y., Wenk, M. R., Kim, Y., Nairn, A. C., & De Camilli, P. (2004). Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proceedings of the National Academy of Sciences of the United States of America, 101, 546–551.

    Article  PubMed  CAS  Google Scholar 

  87. Irie, F., Okuno, M., Pasquale, E. B., & Yamaguchi, Y. (2005). EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nature Cell Biology, 7, 501–509.

    Article  PubMed  CAS  Google Scholar 

  88. Kaneko, T., Maeda, A., Takefuji, M., Aoyama, H., Nakayama, M., Kawabata, S., et al. (2005). Rho mediates endocytosis of epidermal growth factor receptor through phosphorylation of endophilin A1 by Rho-kinase. Genes Cells, 10, 973–987.

    Article  PubMed  CAS  Google Scholar 

  89. Bodenmiller, B., et al. (2007). PhosphoPep—a phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Molecular Systems Biology, 3, 139.

    Article  PubMed  Google Scholar 

  90. Gnad, F., Ren, S., Cox, J., Olsen, J. V., Macek, B., Oroshi, M., et al. (2007). PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biology, 8, R250.

    Article  PubMed  CAS  Google Scholar 

  91. Yamaguchi, H., Woods, N. T., Dorsey, J. F., Takahashi, Y., Gjertsen, N. R., Yeatman, T., et al. (2008). SRC directly phosphorylates Bif-1 and prevents its interaction with Bax and the initiation of anoikis. The Journal of Biological Chemistry, 283, 19112–19118.

    Article  PubMed  CAS  Google Scholar 

  92. Guo, A., et al. (2008). Signaling networks assembled by oncogenic EGFR and c-Met. Proceedings of the National Academy of Sciences of the United States of America, 105, 692–697.

    Article  PubMed  CAS  Google Scholar 

  93. Jorgensen, C., Sherman, A., Chen, G. I., Pasculescu, A., Poliakov, A., Hsiung, M., et al. (2009). Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science, 326, 1502–1509.

    Article  PubMed  CAS  Google Scholar 

  94. Zhai, B., Villen, J., Beausoleil, S. A., Mintseris, J., & Gygi, S. P. (2008). Phosphoproteome analysis of Drosophila melanogaster embryos. Journal of Proteome Research, 7, 1675–1682.

    Article  PubMed  CAS  Google Scholar 

  95. Nonis, D., Schmidt, M. H., van de Loo, S., Eich, F., Dikic, I., Nowock, J., Auburger, G. (2008). Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cell Signal, 20, 1725–1739.

    Google Scholar 

  96. Rikova, K., et al. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131, 1190–1203.

    Article  PubMed  CAS  Google Scholar 

  97. Wu, X., Gan, B., Yoo, Y., & Guan, J. L. (2005). FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Developmental Cell, 9, 185–196.

    Article  PubMed  CAS  Google Scholar 

  98. Wang, M. Q., Kim, W., Gao, G., Torrey, T. A., Morse, H. C, 3rd, De Camilli, P., et al. (2003). Endophilins interact with Moloney murine leukemia virus Gag and modulate virion production. Journal of Biology, 3, 4.

    Article  PubMed  Google Scholar 

  99. Yang, T., Xu, J. Z., Jia, Q. Z., Guo, H., Luo, F., Ye, Q., et al. (2010). Comparative analysis of sequence alignment of SH3GL1 gene as a disease candidate gene of adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi, 48, 435–438.

    PubMed  Google Scholar 

  100. Sinha, S., Chunder, N., Mukherjee, N., Alam, N., Roy, A., Roychoudhury, S., et al. (2008). Frequent deletion and methylation in SH3GL2 and CDKN2A loci are associated with early- and late-onset breast carcinoma. Annals of Surgical Oncology, 15, 1070–1080.

    Article  PubMed  Google Scholar 

  101. Shang, C., Fu, W. N., Guo, Y., Huang, D. F., & Sun, K. L. (2007). Study of the SH3-domain GRB2-like 2 gene expression in laryngeal carcinoma. Chinese Medical Journal, 120, 385–388.

    PubMed  CAS  Google Scholar 

  102. Farrell, W. E., Simpson, D. J., Bicknell, J. E., Talbot, A. J., Bates, A. S., & Clayton, R. N. (1997). Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas: the deleted region involves markers outside of the MTS1 and MTS2 genes. Cancer Research, 57, 2703–2709.

    PubMed  CAS  Google Scholar 

  103. Daigeler, A., Klein-Hitpass, L., Stricker, I., Muller, O., Kuhnen, C., Chromik, A. M., et al. (2010). Malignant fibrous histiocytoma–pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study. Langenbecks Archives of Surgery, 395, 261–275.

    Article  Google Scholar 

  104. Ghosh, A., Ghosh, S., Maiti, G. P., Sabbir, M. G., Alam, N., Sikdar, N., et al. (2009). SH3GL2 and CDKN2A/2B loci are independently altered in early dysplastic lesions of head and neck: correlation with HPV infection and tobacco habit. Journal of Pathology, 217, 408–419.

    Article  PubMed  CAS  Google Scholar 

  105. Giordani, L., Iolascon, A., Servedio, V., Mazzocco, K., Longo, L., & Tonini, G. P. (2002). Two regions of deletion in 9p22–p24 in neuroblastoma are frequently observed in favorable tumors. Cancer Genetics Cytogenetics, 135, 42–47.

    Article  CAS  Google Scholar 

  106. Osterberg, L., Levan, K., Partheen, K., Delle, U., Olsson, B., Sundfeldt, K., et al. (2009). Potential predictive markers of chemotherapy resistance in stage III ovarian serous carcinomas. BMC Cancer, 9, 368.

    Article  PubMed  CAS  Google Scholar 

  107. Ma, L. H., et al. (2007). Aberrant transcriptional regulation of the MLL fusion partner EEN by AML1-ETO and its implication in leukemogenesis. Blood, 109, 769–777.

    Article  PubMed  CAS  Google Scholar 

  108. Sun, Q., Kong, C. T., Huang, F. P., & Chan, L. C. (2008). Aberrant dendritic cell differentiation initiated by the Mll-Een fusion gene does not require leukemic transformation. Journal of Leukocyte Biology, 83, 173–180.

    Article  PubMed  CAS  Google Scholar 

  109. Nguyen, S. T., Hasegawa, S., Tsuda, H., Tomioka, H., Ushijima, M., Noda, M., et al. (2007). Identification of a predictive gene expression signature of cervical lymph node metastasis in oral squamous cell carcinoma. Cancer Science, 98, 740–746.

    Article  PubMed  CAS  Google Scholar 

  110. Bonner, A. E., Lemon, W. J., Devereux, T. R., Lubet, R. A., & You, M. (2004). Molecular profiling of mouse lung tumors: association with tumor progression, lung development, and human lung adenocarcinomas. Oncogene, 23, 1166–1176.

    Article  PubMed  CAS  Google Scholar 

  111. Lee, J. W., Jeong, E. G., Soung, Y. H., Nam, S. W., Lee, J. Y., Yoo, N. J., et al. (2006). Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas. Pathology, 38, 312–315.

    Article  PubMed  CAS  Google Scholar 

  112. Coppola, D., Khalil, F., Eschrich, S. A., Boulware, D., Yeatman, T., & Wang, H. G. (2008). Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer, 113, 2665–2670.

    Article  PubMed  Google Scholar 

  113. Balakrishnan, A., von Neuhoff, N., Rudolph, C., Kamphues, K., Schraders, M., Groenen, P., et al. (2006). Quantitative microsatellite analysis to delineate the commonly deleted region 1p22.3 in mantle cell lymphomas. Genes Chromosomes Cancer, 45, 883–892.

    Article  PubMed  CAS  Google Scholar 

  114. Ho, J., Kong, J. W., Choong, L. Y., Loh, M. C., Toy, W., Chong, P. K., et al. (2009). Novel breast cancer metastasis-associated proteins. Journal of Proteome Research, 8, 583–594.

    Article  PubMed  CAS  Google Scholar 

  115. Coppola, D., Oliveri, C., Sayegh, Z., Boulware, D., Takahashi, Y., Pow-Sang, J., et al. (2008). Bax-interacting factor-1 expression in prostate cancer. Clinical Genitourinary Cancer, 6, 117–121.

    Article  PubMed  CAS  Google Scholar 

  116. Schlauder, S. M., Calder, K. B., Khalil, F. K., Passmore, L., Mathew, R. A., & Morgan, M. B. (2009). Bif-1 and Bax expression in cutaneous Merkel cell carcinoma. Journal of Cutaneous Pathology, 36, 21–25.

    Article  PubMed  Google Scholar 

  117. Fasso, M., Waitz, R., Hou, Y., Rim, T., Greenberg, N. M., Shastri, N., et al. (2008). SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: a prostate tumor antigen identified by CTLA-4 blockade. Proceedings of the National Academy of Sciences of the United States of America, 105, 3509–3514.

    Article  PubMed  CAS  Google Scholar 

  118. Carinci, F., Francioso, F., Rubini, C., Fioroni, M., Tosi, L., Pezzetti, F., et al. (2003). Genetic portrait of malignant granular cell odontogenic tumour. Oral Oncology, 39, 69–77.

    Article  PubMed  CAS  Google Scholar 

  119. Lapointe, J., et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 101, 811–816.

    Article  PubMed  CAS  Google Scholar 

  120. Bainbridge, M. N., et al. (2006). Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics, 7, 246.

    Article  PubMed  CAS  Google Scholar 

  121. Zuccato, C., Valenza, M., & Cattaneo, E. (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiological Reviews, 90, 905–981.

    Article  PubMed  CAS  Google Scholar 

  122. Kim, M. W., Chelliah, Y., Kim, S. W., Otwinowski, Z., & Bezprozvanny, I. (2009). Secondary structure of Huntingtin amino-terminal region. Structure, 17, 1205–1212.

    Article  PubMed  CAS  Google Scholar 

  123. Smith, R., Brundin, P., & Li, J. Y. (2005). Synaptic dysfunction in Huntington’s disease: A new perspective. Cellular and Molecular Life Sciences, 62, 1901–1912.

    Article  PubMed  CAS  Google Scholar 

  124. Orr, H. T., & Zoghbi, H. Y. (2007). Trinucleotide repeat disorders. Annual Review of Neuroscience, 30, 575–621.

    Article  PubMed  CAS  Google Scholar 

  125. Ren, Y., et al. (2008). Endophilin I expression is increased in the brains of Alzheimer disease patients. The Journal of Biological Chemistry, 283, 5685–5691.

    Article  PubMed  CAS  Google Scholar 

  126. Ramjaun, A. R., Angers, A., Legendre-Guillemin, V., Tong, X. K., & McPherson, P. S. (2001). Endophilin regulates JNK activation through its interaction with the germinal center kinase-like kinase. Journal of Biological Chemistry, 276, 28913–28919.

    Article  PubMed  CAS  Google Scholar 

  127. Kim, E. K., & Choi, E. J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta, 1802, 396–405.

    PubMed  CAS  Google Scholar 

Download references

Note added in proof

In a recent paper (Bai et al. 2010. Cell 143: 430–441) it is demonstrated that in C. elegans endophilin null mutants, synaptic vesicle endocytosis can be rescued efficiently by endophilin protein lacking the SH3 domain, but not by protein containing a mutant N-BAR domain deficient in membrane tubulation. Another paper (Sundborger et al. J. Cell Sci., in press) provides evidence that in the lamprey synapse, endophilin recruits dynamin to a restricted part of the neck of clathrin-coated pits, forming a complex that promotes budding of new synaptic vesicles.

Acknowledgements

The authors thank Viktor Lund for critical reading of the manuscript. Supported by the Dagmar Marshall Foundation and Fonden for Lægevidenskabens Fremme (O.K, A.J.) and the Swedish Research Council/DBRM (L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Kjaerulff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjaerulff, O., Brodin, L. & Jung, A. The Structure and Function of Endophilin Proteins. Cell Biochem Biophys 60, 137–154 (2011). https://doi.org/10.1007/s12013-010-9137-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9137-5

Keywords

Navigation