Skip to main content
Log in

Induction of Human Bone Marrow Mesenchymal Stem Cells Differentiation into Neural-Like Cells Using Cerebrospinal Fluid

  • Original Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

An Editorial Expression of Concern to this article was published on 13 September 2023

This article has been updated

Abstract

To optimize a technique that induces bone marrow mesenchymal stem cells (BMSCs) to differentiation into neural-like cells, using cerebrospinal fluid (CSF) from the patient. In vitro, CSF (Group A) and the cell growth factors EGF and bFGF (Group B) were used to induce BMSCs to differentiate into neural-like cells. Post-induction, presence of neural-like cells was confirmed through the use of light and immunofluorescence microscopy. BMSCs can be induced to differentiate into neural-like cells. The presence of neural-like cells was confirmed via morphological characteristics, phenotype, and biological properties. Induction using CSF can shorten the production time of neural-like cells and the quantity is significantly higher than that obtained by induction with growth factor (P < 0.01). The two induction methods can induce BMSCs to differentiate into neural-like cells. Using CSF induction, 30 ml bone marrow can produce a sufficient number of neural-like cells that totally meet the requirements for clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

Abbreviations

BMSCs:

Bone marrow mesenchymal stem cells

CSF:

Cerebrospinal fluid

auto-CSF:

Autologous cerebrospinal fluid

CNS:

The central nervous system

IMDM:

Iscove’s modified Dulbecco’s medium

PBS:

Phosphate-buffered saline

FBS:

Fetal bovine serum

References

  1. Prockop, D. J., Gregory, C. A., & Spees, J. L. (2003). One strategy for cell and gene therapy: Harnessing the power of adult stem cells to repair tissues. Proceedings of the National Academy of Sciences USA, 100(Suppl. 1), 11917–11923.

    Article  CAS  Google Scholar 

  2. de Vasconcelos Dos Santos, A., da Costa Reis, J., Diaz Paredes, B., Moraes, L., Jasmin Giraldi-Guimaraes, A., & Mendez-Otero, R. (2010). Therapeutic window for treatment of cortical ischemia with bone marrow-derived cells in rats. Brain Research, 1306, 149–158.

    Article  PubMed  Google Scholar 

  3. Hayase, M., Kitada, M., Wakao, S., Itokazu, Y., Nozaki, K., Hashimoto, N., et al. (2009). Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. Journal of Cerebral Blood Flow and Metabolism, 29, 1409–1420.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, D. H., Ahn, Y., Kim, S. U., Wang, K. C., Cho, B. K., Phi, J. H., et al. (2009). Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clinical Cancer Research, 15, 4925–4934.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, J. K., Jin, H. K., & Bae, J. S. (2009). Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neuroscience Letters, 450, 136–141.

    Article  PubMed  CAS  Google Scholar 

  6. Song, C. H., Honmou, O., Ohsawa, N., Nakamura, K., Hamada, H., Furuoka, H., et al. (2009). Effect of transplantation of bone marrow-derived mesenchymal stem cells on mice infected with prions. Journal of Virology, 83, 5918–5927.

    Article  PubMed  CAS  Google Scholar 

  7. Amano, S., Li, S., Gu, C., Gao, Y., Koizumi, S., Yamamoto, S., et al. (2009). Use of genetically engineered bone marrow-derived mesenchymal stem cells for glioma gene therapy. International Journal of Oncology, 35, 1265–1270.

    PubMed  CAS  Google Scholar 

  8. Venkataramana, N. K., Kumar, S. K., Balaraju, S., Radhakrishnan, R. C., Bansal, A., Dixit, A., et al. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Translational Research, 155, 62–70.

    Article  PubMed  CAS  Google Scholar 

  9. Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Nasuelli, N., et al. (2008). Stem cell treatment in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 265, 78–83.

    Article  PubMed  CAS  Google Scholar 

  10. Mazzini, L., Ferrero, I., Luparello, V., Rustichelli, D., Gunetti, M., Mareschi, K., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A PHASE I clinical trial. Experimental Neurology, 223(1), 229–237.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, P. H., Kim, J. W., Bang, O. Y., Ahn, Y. H., Joo, I. S., & Huh, K. (2008). Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clinical Pharmacology and Therapeutics, 83, 723–730.

    Article  PubMed  CAS  Google Scholar 

  12. Bang, O. Y., Lee, J. S., Lee, P. H., & Lee, G. (2005). Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology, 57, 874–882.

    Article  PubMed  Google Scholar 

  13. Enzmann, G. U., Benton, R. L., Talbott, J. F., Cao, Q., & Whittemore, S. R. (2006). Functional considerations of stem cell transplantation therapy for spinal cord repair. Journal of Neurotrauma, 23, 479–495.

    Article  PubMed  Google Scholar 

  14. Callera, F., & do Nascimento, R. X. (2006). Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Experimental Hematology, 34, 130–131.

    Article  PubMed  Google Scholar 

  15. Parr, A., Tator, C., & Keating, A. (2007). Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplantation, 40, 609–619.

    Article  PubMed  CAS  Google Scholar 

  16. Yoon, S., Shim, Y., Park, Y., Chung, J., Nam, J., Kim, M., et al. (2007). Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells, 25, 2066–2073.

    Article  PubMed  Google Scholar 

  17. Xue, y., Luo, Z., & Tian, S. (2005). A study on the culturing of human bone marrow stromal cells in vitro and its primary induction. Chinese Journal of Spine and Spinal Cord, 15, 594–597.

    Google Scholar 

  18. Hofstetter, C. P., Holmstrom, N. A., Lilja, J. A., Schweinhardt, P., Hao, J., Spenger, C., et al. (2005). Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nature Neuroscience, 8, 346–353.

    Article  PubMed  CAS  Google Scholar 

  19. Cao, Q. L., Zhang, Y. P., Howard, R. M., Walters, W. M., Tsoulfas, P., & Whittemore, S. R. (2001). Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Experimental Neurology, 167, 48–58.

    Article  PubMed  CAS  Google Scholar 

  20. Joannides, A. J., Webber, D. J., Raineteau, O., Kelly, C., Irvine, K. A., Watts, C., et al. (2007). Environmental signals regulate lineage choice and temporal maturation of neural stem cells from human embryonic stem cells. Brain, 130, 1263–1275.

    Article  PubMed  Google Scholar 

  21. Low, C. B., Liou, Y. C., & Tang, B. L. (2008). Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy. Journal of Neuroscience Research, 86, 1670–1679.

    Article  PubMed  CAS  Google Scholar 

  22. Kang, X. Q., Zang, W. J., Bao, L. J., Li, D. L., Xu, X. L., & Yu, X. J. (2006). Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biology International, 30, 569–575.

    Article  PubMed  CAS  Google Scholar 

  23. Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364–370.

    Article  PubMed  CAS  Google Scholar 

  24. Kogler, G., Sensken, S., Airey, J. A., Trapp, T., Muschen, M., Feldhahn, N., et al. (2004). A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. Journal of Experimental Medicine, 200, 123–135.

    Article  PubMed  Google Scholar 

  25. Yong-zhou, S., Hui-xian, C., Zhe, L., & Xin-sheng, W. (2008). Effects of brain homogenate on the differentiation of rat bone mesenchymal stem cells into neuron-like cells following traumatic brain injury. Journal of Clinical Rehabilitative Tissue Engineering Research, 12, 461–464.

    Google Scholar 

  26. Wang, X. S., Zhao, Y., Li, H. F., & Zhang, X. L. (2009). Astragalus mongholicus-induced differentiation of rat bone marrow mesenchymal stem cells. Journal of Clinical Rehabilitative Tissue Engineering Research, 19, 3785–3789.

    Google Scholar 

  27. Lu, C. Q. L. R., & Zhang, Q. B. (2008). Gene expression in differentiation of rat bone marrow-derived mesenchymal stem cells into neurocyte-like cells induced by salvia mitiorrhiza. Journal of Clinical Rehabilitative Tissue Engineering Research, 47, 9363–9366.

    Google Scholar 

  28. Han, X. G., Li, J. B., & Ma, J. J. (2009). Induced differentiation of adult bone marrow mesenchymal stem cell to wards neuron-like cells: The best inducer and induction time. Journal of Clinical Rehabilitative Tissue Engineering Research, 32, 6332–6337.

    Google Scholar 

  29. Tureyen, K., Vemuganti, R., Bowen, K. K., Sailor, K. A., & Dempsey, R. J. (2005). EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery, 57, 1254–1263. (discussion 1254–1263).

    Article  PubMed  Google Scholar 

  30. Grundstrom, E., Lindholm, D., Johansson, A., Blennow, K., & Askmark, H. (2000). GDN but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis. Neuroreport, 11, 1781–1783.

    Article  PubMed  CAS  Google Scholar 

  31. Huang, C. C., Liu, C. C., Wang, S. T., Chang, Y. C., Yang, H. B., & Yeh, T. F. (1999). Basic fibroblast growth factor in experimental and clinical bacterial meningitis. Pediatric Research, 45, 120–127.

    Article  PubMed  CAS  Google Scholar 

  32. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164, 247–256.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant of the National Natural Science Foundation of China (NSFC30972834 to Dr. Lu, China and the Natural Science Foundation of Xuzhou City (XM09B119 to Dr. Ye, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ye or Yin-Ming Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Y., Zeng, YM., Wan, MR. et al. Induction of Human Bone Marrow Mesenchymal Stem Cells Differentiation into Neural-Like Cells Using Cerebrospinal Fluid. Cell Biochem Biophys 59, 179–184 (2011). https://doi.org/10.1007/s12013-010-9130-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9130-z

Keywords

Navigation