Skip to main content

Advertisement

Log in

Altered Expression of Proliferation-Inducing and Proliferation-Inhibiting Genes Might Contribute to Acquired Doxorubicin Resistance in Breast Cancer Cells

  • Original Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study was designed to investigate the molecular changes that may develop during exposure of breast cancer cells to anticancer agents and that may lead to acquired resistance. We used two breast cancer cell lines, a parental (MCF7/WT) and a doxorubicin-resistant (MCF7/DOX) one. Cell survival, cell cycle distribution and RT-PCR expression level of genes involved in DNA damage response, MDR1, GST and TOPOIIα were measured. MCF7/DOX cells were five-fold more resistant to doxorubicin (DOX) than the MCF7/WT cells. DOX treatment causes arrest of MCF7/DOX cells in G1 and G2 phases of cell cycle whereas MCF7/WT cells were arrested in S-phase. The molecular changes in both cell lines due to DOX treatment could be classified into: (1) the basal level of p53, p21, BRCA1, GST and TOPOIIα mRNA was higher in MCF7/DOX than MCF7/WT. During DOX treatment, the expression level of these genes decreased in both cell lines but the rate of down-regulation was faster in MCF7/WT than MCF7/DOX cells. (2) The expression level of MDR1 was the same in both cell lines but 48 and 72 h of drug treatment, MDR1 disappeared in MCF7/WT but still expressed in MCF7/DOX. (3) There was no change in the expression level of BAX, FAS and BRCA2 in both cell lines. Conclusively, after validation in clinical samples, overexpression of genes like BRCA1, p53, p21, GST, MDR1 and TOPOIIα could be used as a prognostic biomarker for detection of acquired resistance in breast cancer and as therapeutic targets for the improvement of breast cancer treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mauri, D., Pavlidis, N., & Ioannidis, J. (2005). Neoadjuvant versus adjuvant systemic treatment in breast cancer: A meta-analysis. Journal of the National Cancer Institute, 97, 188–194.

    Article  PubMed  Google Scholar 

  2. Campos, S. (2003). Liposomal anthracyclines: Adjuvant and neoadjuvant therapy for breast cancer. Oncologist, 8, 10–16.

    Article  PubMed  CAS  Google Scholar 

  3. Bartek, J., & Jiri Lukas, J. (2007). DNA damage checkpoints: From initiation to recovery or adaptation. Current Opinion in Cell Biology, 19, 238–245.

    Article  PubMed  CAS  Google Scholar 

  4. Lukas, J., Lukas, C., & Bartek, J. (2004). Mammalian cell cycle checkpoints: Signalling pathways and their organization in space and time. DNA Repair, 3, 3997–4007.

    Article  CAS  Google Scholar 

  5. Bartek, J., & Lukas, J. (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 3, 421–429.

    Article  PubMed  CAS  Google Scholar 

  6. Bartek, J., Bartkova, J., & Lukas, J. (2007). DNA damage signaling guards against activated oncogenes and tumour progression. Oncogene, 26, 7773–7779.

    Article  PubMed  CAS  Google Scholar 

  7. Tewari, K., & Manetta, A. (1999). In vitro chemosensitivity testing and mechanisms of drug resistance. Current Oncology Reports, 1, 77–84.

    Article  PubMed  CAS  Google Scholar 

  8. Teodori, E., Dei, S., Scapecchi, S., & Gualtieri, F. (2002). The medicinal chemistry of multidrug resistance (MDR) reversing drugs. Farmaco, 57, 385–415.

    Article  PubMed  CAS  Google Scholar 

  9. Goto, S., Ihara, Y., Urata, Y., Izumi, S., Abe, K., Koji, T., et al. (2002). Doxorubicin-induced DNA intercalation and scavenging by nuclear glutathione S-transferase π. FASEB Journal, 15, 2702–2714.

    Article  Google Scholar 

  10. Schneider, E., Horton, J., Yang, C., Nakagawa, M., & Cowan, K. (1994). Multi-drug resistance associated protein gene over-expression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Research, 54, 152–158.

    PubMed  CAS  Google Scholar 

  11. Azab, S., El-Demerdash, E., Abdel-Naim, A., Youssef, E., El-Sharkawy, N., & Osman, A. (2005). Modulation of epirubicin cytotoxicity by tamoxifen in human breast cancer cell lines. Biochemical Pharmacology, 70, 725–732.

    Article  PubMed  CAS  Google Scholar 

  12. Li, J., Xu, L., He, K., Guo, W., Zheng, Y., Xia, P., et al. (2001). Reversal effects of nomegestrol acetate on multi-drug resistance in adriamycin-resistant MCF-7 breast cancer cell line. Breast Cancer Research, 3, 253–263.

    Article  PubMed  CAS  Google Scholar 

  13. Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.

    Article  PubMed  CAS  Google Scholar 

  14. Sherr, C., & Roberts, J. (1999). CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes and Development, 13, 1501–1512.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor, W., & Stark, G. (2001). Regulation of the G2/M transition by p53. Oncogene, 20, 1803–1815.

    Article  PubMed  CAS  Google Scholar 

  16. Bucher, N., & Britten, C. (2008). G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. British Journal of Cancer, 98, 523–528.

    Article  PubMed  CAS  Google Scholar 

  17. Wendt, J., Radetzki, S., Von Haefen, C., Hemmati, P., Güner, D., Schulze-Osthoff, K. B., et al. (2006). Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Oncogene, 25, 972–980.

    Article  PubMed  CAS  Google Scholar 

  18. Iwamoto, K., Shinomiya, N., & Mochizuki, H. (1999). Different cell cycle mechanisms between UV-induced and X-ray-induced apoptosis in WiDr colorectal carcinoma cells. Apoptosis, 4, 59–66.

    Article  PubMed  CAS  Google Scholar 

  19. Rigberg, D., Blinman, T., Kimf, S., Colem, A., & Mcfaddend, W. (1999). Antisense blockade of p21/WAF1 decreases radiation-induced G2 arrest in esophageal squamous cell carcinoma. The Journal of Surgical Research, 81, 6–10.

    Article  PubMed  CAS  Google Scholar 

  20. Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J., et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282, 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  21. Lajeski, A., Phan, V., Kottke, T., & Kaufmann, S. (2002). G1 and G2 cell-cycle arrest following microtubule depolymerization in human breast cancer cells. Journal of Clinical Investigation, 110, 91–99.

    Google Scholar 

  22. Hohenstein, P., & Giles, R. (2003). BRCA1: A scaffold for p53 response? Trends in Genetics, 19, 489–494.

    Article  PubMed  CAS  Google Scholar 

  23. Maclachlan, T. K., Takimoto, R., & El-Deiry, W. S. (2002). BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Molecular and Cellular Biology, 22, 4280–4292.

    Article  PubMed  CAS  Google Scholar 

  24. Arizti, P., Fang, L., Park, I., Yin, Y., Solomon, E., Ouchi, T., et al. (2000). Tumor suppressor p53 is required to modulate BRCA1 expression. Molecular and Cellular Biology, 20, 7450–7459.

    Article  PubMed  CAS  Google Scholar 

  25. Castedo, M., Perfettini, J., Roumier, T., Andreau, K., Medema, R., & Kroemer, G. (2004). Cell death by mitotic catastrophe: A molecular definition. Oncogene, 23, 2825–2837.

    Article  PubMed  CAS  Google Scholar 

  26. Castedo, M., & Kroemer, G. (2004). Mitotic catastrophe: A special case of apoptosis. Journal de la Société de biologie, 198, 97–103.

    PubMed  CAS  Google Scholar 

  27. Roninson, I. B., Broude, E. V., & Chang, B. (2001). If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumour cells. Drug Resistance Updates, 4, 303–313.

    Article  PubMed  CAS  Google Scholar 

  28. Schmitt, C., Fridman, J., Lee, Y., Baranov, E., Hoffman, R., & Lowe, S. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109, 335–346.

    Article  PubMed  CAS  Google Scholar 

  29. Eom, Y., & Choi, K. (2007). Bcl-xL blocks high dose doxorubicin-induced apoptosis but not low dose doxorubicin-induced cell death through mitotic catastrophe. Biochemical and Biophysical Research Communications, 363, 1044–1049.

    Article  PubMed  CAS  Google Scholar 

  30. Park, S., Eom, Y., & Choi, K. (2005). Cdc2 and Cdk2 play critical roles in low dose doxorubicin-induced cell death through mitotic catastrophe but not in high dose doxorubicin-induced apoptosis. Biochemical and Biophysical Research Communications, 334, 1014–1021.

    Article  PubMed  CAS  Google Scholar 

  31. Cheng Lin, Y., & Fang Wang, F. (2008). Mechanisms underlying the pro-survival pathway of p53 in suppressing mitotic death induced by adriamycin. Cellular Signaling, 20, 258–267.

    Article  CAS  Google Scholar 

  32. De Bruin, E., & Medema, J. (2008). Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treatment Reviews, 34, 737–749.

    Article  PubMed  Google Scholar 

  33. Eom, Y., Kim, M., Park, S., Goo, M., Kwon, H., Seonghyang, S., et al. (2005). Two distinct modes of cell death induced by doxorubicin: Apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene, 24, 4765–4777.

    Article  PubMed  CAS  Google Scholar 

  34. Di Leo, A., Biganzoli, L., Claudino, W., Licitra, S., Pestrin, M., & Larsimont, D. (2008). Topoisomerase II alpha gene as a marker predicting anthracyclines activity in early breast cancer patients: Ready for the primetime? European Journal of Cancer, 44, 2791–2798.

    Article  PubMed  CAS  Google Scholar 

  35. Pritchard, K., Messersmith, H., Elavathi, L., Trudeau, M., Malley, F., & Dhesy-Thind, B. (2008). HER-2 and Topoisomerase II as predictors of response to chemotherapy. Journal of Clinical Oncology, 26, 736–744.

    Article  PubMed  CAS  Google Scholar 

  36. Malley, F., Chia, S., Tu, D., Shepherd, L., Levine, M., Huntsman, D., et al. (2006). Prognostic and predictive value of topoisomerase II Alpha in a randomized trial comparing CMF to CEF in premenopausal women with node positive breast cancer. ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 24, 533 (abstract).

    Article  CAS  Google Scholar 

  37. Durbecq, V., Paesmans, M., Cardoso, F., Desmedt, C., Di Leo, A., Chan, S., et al. (2004). Topoisomerase II alpha as a predictive marker in a population of advanced breast cancer patients randomly treated either with single-agent doxorubicin or single-agent docetaxel. Molecular Cancer Therapeutics, 3, 1207–1214.

    PubMed  CAS  Google Scholar 

  38. Fritz, P., Cabrera, C., Dippon, J., Gerteis, A., Simon, W., Aulitzky, W., et al. (2005). C-erbB2 and topoisomerase IIα protein expression independently predict poor survival in primary human breast cancer: A retrospective study. Breast Cancer Research, 7, 374–384.

    Article  CAS  Google Scholar 

  39. Nagane, M., Asai, A., Shibuui, S., Oyama, H., Nomura, K., & Kuchino, Y. (2008). Expression pattern of chemoresistance-related genes in human malignant brain tumors: A working knowledge for proper selection of anticancer drugs. Japanese Journal of Clinical Oncology, 29, 527–534.

    Article  Google Scholar 

  40. Burg, D., Riepsaame, J., Pont, C., Mulder, G., & van de Water, B. (2006). Peptide-bond modified glutathione conjugate analogs modulate GSTpi function in GSH-conjugation, drug sensitivity and JNK signaling. Biochemical Pharmacology, 71, 268–277.

    Article  PubMed  CAS  Google Scholar 

  41. Huang, J., Tan, P., Thiyagarajan, J., & Bay, B. (2003). Prognostic significance of glutathione S-transferase-pi in invasive breast cancer. Modern Pathology, 16, 558–565.

    Article  PubMed  Google Scholar 

  42. Györffy, B., Serra, V., Jürchott, K., Abdul-Ghani, R., Garber, M., Stein, U., et al. (2005). Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. Oncogene, 24(51), 7542–7551.

    Article  PubMed  CAS  Google Scholar 

  43. Stigbrand, R. (2004). Interfering with cancer: A brief outline of advances in RNA interference in oncology. Tumor Biology, 25, 329–336.

    Article  PubMed  CAS  Google Scholar 

  44. Wu, H., Hait, W. N., & Yang, J. M. (2003). Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Research, 63(7), 1515–1519.

    PubMed  CAS  Google Scholar 

  45. Paull, A., & Whikehart, D. (2005). Expression of the p53 family of proteins in central and peripheral human corneal endothelial cells. Molecular Vision, 11, 328–334.

    PubMed  CAS  Google Scholar 

  46. Burns, T., Bernhard, E., & El-Deiry, W. (2001). Tissue specific expression of p53 target genes suggests a key role for killer/DR5 in p53 dependent apoptosis in vivo. Oncogene, 20, 4601–4612.

    Article  PubMed  CAS  Google Scholar 

  47. Andres, J., Fan, S., Turkel, G., Wang, J., Twu, N., Yuan, R., et al. (1998). Regulation of BRCA1 and BRCA2 expression in human breast cancer cells by DNA-damaging agents. Oncogene, 16(17), 2229–2241.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Cancer Institute project grant, Cairo University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekram M. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, E.M., El-Awady, R.A., Abdel Alim, M.A. et al. Altered Expression of Proliferation-Inducing and Proliferation-Inhibiting Genes Might Contribute to Acquired Doxorubicin Resistance in Breast Cancer Cells. Cell Biochem Biophys 55, 95–105 (2009). https://doi.org/10.1007/s12013-009-9058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9058-3

Keywords

Navigation