Skip to main content

Advertisement

Log in

Potential for Protein Surface Shape Analysis Using Spherical Harmonics and 3D Zernike Descriptors

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

With structure databases expanding at a rapid rate, the task at hand is to provide reliable clues to their molecular function and to be able to do so on a large scale. This, however, requires suitable encodings of the molecular structure which are amenable to fast screening. To this end, moment-based representations provide a compact and nonredundant description of molecular shape and other associated properties. In this article, we present an overview of some commonly used representations with specific focus on two schemes namely spherical harmonics and their extension, the 3D Zernike descriptors. Key features and differences of the two are reviewed and selected applications are highlighted. We further discuss recent advances covering aspects of shape and property-based comparison at both global and local levels and demonstrate their applicability through some of our studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martin, A. C., Orengo, C. A., Hutchinson, E. G., Jones, S., Karmirantzou, M., Laskowski, R. A., et al. (1998). Protein folds and functions. Structure, 6, 875–884.

    Article  PubMed  CAS  Google Scholar 

  2. Thornton, J. M., Todd, A. E., Milburn, D., Borkakoti, N., & Orengo, C. A. (2000). From structure to function: Approaches and limitations. Nature Structural Biology, 7(Suppl), 991–994.

    Article  PubMed  CAS  Google Scholar 

  3. Kihara, D., & Skolnick, J. (2004). Microbial Genomes have over 72% structure assignment by the threading algorithm PROSPECTOR_Q. Proteins, 55, 464–473.

    Article  PubMed  CAS  Google Scholar 

  4. Mizuguchi, K., & Go, N. (1995). Seeking significance in three-dimensional protein structure comparisons. Current Opinion in Structural Biology, 5, 377–382.

    Article  PubMed  CAS  Google Scholar 

  5. Kihara, D., & Skolnick, J. (2003). The PDB is a covering set of small protein structures. Journal of Molecular Biology, 334, 793–802.

    Article  PubMed  CAS  Google Scholar 

  6. Shindyalov, I. N., & Bourne, P. E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering, 11, 739–747.

    Article  PubMed  CAS  Google Scholar 

  7. Holm, L., & Sander, C. (1993). Protein structure comparison by alignment of distance matrices. Journal of Molecular Biology, 233, 123–138.

    Article  PubMed  CAS  Google Scholar 

  8. Mizuguchi, K., & Go, N. (1995). Comparison of spatial arrangements of secondary structural elements in proteins. Protein Engineering, 8, 353–362.

    Article  PubMed  CAS  Google Scholar 

  9. Betancourt, M. R., & Skolnick, J. (2004). Local propensities and statistical potentials of backbone dihedral angles in proteins. Journal of Molecular Biology, 342, 635–649.

    Article  PubMed  CAS  Google Scholar 

  10. Kinoshita, K., & Nakamura, H. (2003). Identification of protein biochemical functions by similarity search using the molecular surface database eF-site. Protein Science, 12, 1589–1595.

    Article  PubMed  CAS  Google Scholar 

  11. Taylor, W. R., & Orengo, C. A. (1989). Protein structure alignment. Journal of Molecular Biology, 208, 1–22.

    Article  PubMed  CAS  Google Scholar 

  12. Lozano, M., & Escolano, F. (2006). Protein classification by matching and clustering surface graphs. Pattern Recognition, 39(4), 539–551

    Article  Google Scholar 

  13. Rogen, P., & Fain, B. (2003). Automatic classification of protein structure by using Gauss integrals. Proceedings of the National Academy of Sciences of the United States of America, 100, 119–124.

    Article  PubMed  CAS  Google Scholar 

  14. Pan, T., & Uhlenbeck, O. C. (1993). Circularly permuted DNA, RNA and proteins—A review. Gene, 125, 111–114.

    Article  PubMed  CAS  Google Scholar 

  15. Kolodny, R., Petrey, D., & Honig, B. (2006). Protein structure comparison: Implications for the nature of ‘fold space’, and structure and function prediction. Current Opinion in Structural Biology, 16, 393–398.

    Article  PubMed  CAS  Google Scholar 

  16. Burley, S. K. (2000). An overview of structural genomics. Nature Structural Biology, 7(Suppl), 932–934.

    Article  PubMed  CAS  Google Scholar 

  17. Todd, A. E., Marsden, R. L., Thornton, J. M., & Orengo, C. A. (2005). Progress of structural genomics initiatives: An analysis of solved target structures. Journal of Molecular Biology, 348, 1235–1260.

    Article  PubMed  CAS  Google Scholar 

  18. Westbrook, J., Feng, Z., Chen, L., Yang, H., & Berman, H. M. (2003). The Protein Data Bank and structural genomics. Nucleic Acids Research, 31, 489–491.

    Article  PubMed  CAS  Google Scholar 

  19. Yokoyama, S., Matsuo, Y., Hirota, H., Kigawa, T., Shirouzu, M., Kuroda, Y., et al. (2000). Structural genomics projects in Japan. Progress in Biophysics and Molecular Biology, 73, 363–376.

    Article  PubMed  CAS  Google Scholar 

  20. Todd, A. E., Orengo, C. A., & Thornton, J. M. (2001). Evolution of function in protein superfamilies from a structural perspective. Journal of Molecular Biology, 307, 1113–1143.

    Article  PubMed  CAS  Google Scholar 

  21. Redfern, O. C., Dessailly, B., & Orengo, C. A. (2008). Exploring the structure and function paradigm. Current Opinion in Structural Biology, 18, 394–402.

    Article  PubMed  CAS  Google Scholar 

  22. Hawkins, T., & Kihara, D. (2007). Function prediction of uncharacterized proteins. Journal of Bioinformatics and Computational Biology, 5, 1–30.

    Article  PubMed  CAS  Google Scholar 

  23. Sael, L., & Kihara, D. (2009). Protein surface representation and comparison: New approaches in structural proteomics. In J. Chen & S. Lonardi (Eds.), Biological data mining. Boca Raton, FL, USA: Chapman & Hall/CRC Press.

    Google Scholar 

  24. Via, A., Ferre, F., Brannetti, B., & Helmer-Citterich, M. (2000). Protein surface similarities: A survey of methods to describe and compare protein surfaces. Cellular and Molecular Life Sciences, 57, 1970–1977.

    Article  PubMed  CAS  Google Scholar 

  25. Exner, T. E., Keil, M., & Brickmann, J. (2002). Pattern recognition strategies for molecular surfaces. I. Pattern generation using fuzzy set theory. Journal of Computational Chemistry, 23, 1176–1187.

    Article  PubMed  CAS  Google Scholar 

  26. Sael, L., Li, B., La, D., Fang, Y., Ramani, K., Rustamov, R., et al. (2008). Fast protein tertiary structure retrieval based on global surface shape similarity. Proteins, 72, 1259–1273.

    Article  PubMed  CAS  Google Scholar 

  27. Albou, L. P., Schwarz, B., Poch, O., Wurtz, J. M., & Moras, D. (2008). Defining and characterizing protein surface using alpha shapes. Proteins, 76, 1–12.

    Article  Google Scholar 

  28. Bock, M. E., Cortelazzo, G. M., Ferrari, C., & Guerra, C. (2005). Identifying similar surface patches on proteins using a spin-image surface representation. pp. 417–428.

  29. Ankerst, M., Kastenmuller, G., Kriegel, H.-P., & Seidl, T. (1999). 3D shape histograms for similarity search and classification in spatial databases. pp. 207–226.

  30. Hu, M. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8, 179–187.

    Google Scholar 

  31. Teague, M. (1980). Image analysis via the general theory of moments. Journal of the Optical Society of America, 70, 920–930.

    Article  Google Scholar 

  32. Teh, C. H., & Chin, R. T. (1988). On image-analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 496–513.

    Article  Google Scholar 

  33. Biedenham, L., & Louck, J. (1981). Angular momentum in quantum physics. Reading, MA, USA: Addison-Wesley.

    Google Scholar 

  34. Lisle, I., & Huang, S. (2007). Algorithms for spherical harmonic lighting. In: GRAPHITE’07: Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia, New York, NY, USA, ACM (pp. 235–238).

  35. Max, N., & Getzoff, E. (1988). Spherical harmonic molecular surfaces. IEEE Computer Graphics and Applications, 8(4), 42–50.

    Article  Google Scholar 

  36. Kovacs, J. A., & Wriggers, W. (2002). Fast rotational matching. Acta Crystallographica. Section D, Biological Crystallography, 58, 1282–1286.

    Article  PubMed  Google Scholar 

  37. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., et al. (2003). A search engine for 3D models. ACM Transactions on Graphics, 22, 83–105.

    Article  Google Scholar 

  38. Morris, R. J., Najmanovich, R. J., Kahraman, A., & Thornton, J. M. (2005). Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons. Bioinformatics, 21, 2347–2355.

    Article  PubMed  CAS  Google Scholar 

  39. Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on geometry processing, vol 43 (pp. 156–164).

  40. Edmonds, A. R. (1957). Angular momentum in quantum mechanics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  41. Mak, L., Grandison, S., & Morris, R. J. (2007). An extension of spherical harmonics to region-based rotationally invariant descriptors for molecular shape description and comparison. Journal of Molecular Graphics & Modelling, 26, 1035–1045.

    Article  Google Scholar 

  42. Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19.

    Article  Google Scholar 

  43. Canterakis, N. (1999). 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. In: Proc. 11th scandinavian conference on image analysis (pp. 85–93).

  44. Novotni, M., & Klein, R. (2003). 3D Zernike descriptors for content based shape retrieval. In: ACM symposium on solid and physical modeling, proceedings of the eighth ACM symposium on Solid modeling and applications (pp. 216–225).

  45. Sael, L., La, D., Li, B., Rustamov, R., & Kihara, D. (2008). Rapid comparison of properties on protein surface. Proteins, 73, 1–10.

    Article  PubMed  CAS  Google Scholar 

  46. Venkatraman, V., Yang, Y. D., Sael, L., & Kihara, D. (2009). Protein–protein docking using region-based 3D Zernike descriptors (submitted).

  47. Connolly, M. L. (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science, 221, 709–713.

    Article  PubMed  CAS  Google Scholar 

  48. Gramada, A., & Bourne, P. E. (2006). Multipolar representation of protein structure. BMC. Bioinformatics, 7, 242.

    Article  PubMed  Google Scholar 

  49. Zhang, T., Chen, W., Hu, M., & Peng, Q. (2005). A similarity computing algorithm for proteins. In Ninth international conference on computer aided design and computer graphics (CAD-CG’05) (pp. 168–172).

  50. Binkowski, T. A., & Joachimiak, A. (2008). Protein functional surfaces: Global shape matching and local spatial alignments of ligand binding sites. BMC Structural Biology, 8, 45.

    Article  PubMed  Google Scholar 

  51. Zhang, Z., & Grigorov, M. G. (2006). Similarity networks of protein binding sites. Proteins, 62, 470–478.

    Article  PubMed  CAS  Google Scholar 

  52. Kihara, D., Sael, L., & Chikhi, R. (2009). Local surface shape-based protein function prediction using Zernike descriptors. Biophysical Journal, 96, 650a.

    Article  Google Scholar 

  53. Chikhi, R., & Kihara, D. (2009). Real-time protein binding ligand prediction using local surface descriptors (submitted).

  54. Liang, J., Edelsbrunner, H., & Woodward, C. (1998). Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Science, 7, 1884–1897.

    Article  PubMed  CAS  Google Scholar 

  55. Kinoshita, K., & Nakamura, H. (2005). Identification of the ligand binding sites on the molecular surface of proteins. Protein Science, 14, 711–718.

    Article  PubMed  CAS  Google Scholar 

  56. Kalidas, Y., & Chandra, N. (2008). PocketDepth: A new depth based algorithm for identification of ligand binding sites in proteins. Journal of Structural Biology, 161, 31–42.

    Article  PubMed  CAS  Google Scholar 

  57. Kahraman, A., Morris, R. J., Laskowski, R. A., & Thornton, J. M. (2007). Shape variation in protein binding pockets and their ligands. Journal of Molecular Biology, 368, 283–301.

    Article  PubMed  CAS  Google Scholar 

  58. Ritchie, D. W. (2008). Recent progress and future directions in protein–protein docking. Current Protein & Peptide Science, 9, 1–15.

    Article  CAS  Google Scholar 

  59. Chen, R., Li, L., & Weng, Z. (2003). ZDOCK: An initial-stage protein-docking algorithm. Proteins, 52, 80–87.

    Article  PubMed  CAS  Google Scholar 

  60. Ritchie, D. W., & Kemp, G. J. (2000). Protein docking using spherical polar Fourier correlations. Proteins, 39, 178–194.

    Article  PubMed  CAS  Google Scholar 

  61. Mendez, R., Leplae, R., De, M. L., & Wodak, S. J. (2003). Assessment of blind predictions of protein-protein interactions: Current status of docking methods. Proteins, 52, 51–67.

    Article  PubMed  CAS  Google Scholar 

  62. Ritchie, D. W. (2003). Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins, 52, 98–106.

    Article  PubMed  CAS  Google Scholar 

  63. Mavridis, L., Hudson, B. D., & Ritchie, D. W. (2007). Toward high throughput 3D virtual screening using spherical harmonic surface representations. Journal of Chemical Information and Modeling, 47, 1787–1796.

    Article  PubMed  CAS  Google Scholar 

  64. Ritchie, D. W., & Kemp G. J. L. (1999). Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. Journal of Computational Chemistry, 20(4), 383–395.

    Article  CAS  Google Scholar 

  65. Grant, J., Gallardo, M., & Pickup, B. (1998). A fast method of molecular shape comparison. A simple application of a Gaussian description of molecular shape. pp. 1653–1666.

  66. Cai, W., Xu, J., Shao, X., Leroux, V., Beautrait, A., & Maigret, B. (2008). SHEF: A vHTS geometrical filter using coefficients of spherical harmonic molecular surfaces. Journal of Molecular Modeling, 14, 393–401.

    Article  PubMed  CAS  Google Scholar 

  67. McGann, M. R., Almond, H. R., Nicholls, A., Grant, J. A., & Brown, F. K. (2003). Gaussian docking functions. Biopolymers, 68, 76–90.

    Article  PubMed  CAS  Google Scholar 

  68. Daras, D., Zarpalas, D., Tzovaras, D., & Strintzis, M. G. (2005). 3D shape-based techniques for protein classification. In: International conference on image processing (pp. 1130–1133).

  69. Sael, L., & Kihara, D. (2008). Protein local surface shape comparison. Unpublished data.

  70. Lawrence, M. C., & Colman, P. M. (1993). Shape complementarity at protein/protein interfaces. Journal of Molecular Biology, 234, 946–950.

    Article  PubMed  CAS  Google Scholar 

  71. Mitchell, J. C., Kerr, R., & Ten Eyck, L. F. (2001). Rapid atomic density methods for molecular shape characterization. Journal of Molecular Graphics & Modelling, 19, 325–390.

    Article  CAS  Google Scholar 

  72. Wolfson, H., & Rigoutsos, I. (1997). Geometric hashing: An overview. Computing in Science and Engineering, 4(4), 10–21.

    Article  Google Scholar 

  73. Mintseris, J., Wiehe, K., Pierce, B., Anderson, R., Chen, R., Janin, J., et al. (2005). Protein–protein docking benchmark 2.0: An update. Proteins, 60, 214–216.

    Article  PubMed  CAS  Google Scholar 

  74. Chen, R., & Weng, Z. (2003). A novel shape complementarity scoring function for protein–protein docking. Proteins, 51, 397–408.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Institutes of Health (R01 GM075004) and National Science Foundation (DMS0604776, DMS800568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatraman, V., Sael, L. & Kihara, D. Potential for Protein Surface Shape Analysis Using Spherical Harmonics and 3D Zernike Descriptors. Cell Biochem Biophys 54, 23–32 (2009). https://doi.org/10.1007/s12013-009-9051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9051-x

Keywords

Navigation