Skip to main content

Advertisement

Log in

Profile of Exoglycosidases in Synovial Cell Cultures Derived from Human Synovial Membrane

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Objective Determining the activity of lysosomal exoglycosidases in tissue cultures of synoviocytes derived from the knee joints of patients with injured anterior cruciate ligaments (ACL), juvenile idiopathic arthritis (JIA), and rheumatoid arthritis (RA). Methods The following exoglycosidases in cultured synoviocytes were analyzed with p-nitrophenyl derivatives of appropriate sugars as substrates: hexosaminidase (HEX) and its isoenzyme A (HEX-A), β-glucuronidase (GluA), β-galactosidase (GAL), α-mannosidase (MAN), and α-fucosidase (FUC). Results In our cell cultures, fibroblast-like synovial cells (FLS) dominated. In the group of patients with ACL-injuries, and in the groups of patients with JIA and RA, the activity of the investigated exoglycosidases was significantly higher in the intra- rather than in the extracellular compartment. Hexosaminidase was the predominant exoglycosidase. Stimulation of synoviocytes by IL-1β in cell cultures significantly increased the activity of HEX, HEX-A, and GluA in both compartments, as well as of GAL, MAN, and FUC in the intracellular compartment. Stimulation by IL-1β rheumatoidal synoviocytes increased by 128–201% the activity of HEX and HEX A in intracellular compartments and 33–72% in extracellular compartment. Conclusions The profile of lysosomal exoglycosidases in a cell culture of human synoviocytes is similar, but not identical, to those in the knee joint. Hexosaminidase is the dominant glycosidase in cultured unstimulated and IL-1β-stimulated human synoviocytes. The HEX inhibitors may be new drugs for the treatment of inflamed knee joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.  2

Similar content being viewed by others

References

  1. Ainola, M. M., Mandelin, J. A., Liljestrom, M. P., Hukkanen, M. V., & Konttinen, Y. T. (2005). Pannus invasion and cartilage degradation in rheumatoid arthritis: Involvement of MMP-3 and interleukin -1beta. Clinical and Experimental Rheumatology, 23, 644–650.

    PubMed  CAS  Google Scholar 

  2. Sohar, N., Hammer, H., & Sohar, I. (2002). Lysosomal peptidases and glycosidases in rheumatoid arthritis. Biological Chemistry, 383, 865–869.

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka, S., Hamanishi, C., Kikuchi, H., & Fukuda, K. (1998). Factors related to degradation of articular cartilage in osteoarthritis: A review. Seminars in Arthritis and Rheumatism, 27, 392–399.

    Article  PubMed  CAS  Google Scholar 

  4. Ortutay, Z., Polga’r, A., Gömör, B., et al. (2003). Synovial fluid exoglycosidases are predictors of rheumatoid arthritis and are effective in cartilage glycosaminoglycan depletion. Arthritis and Rheumatism, 48, 2163–2172.

    Article  PubMed  CAS  Google Scholar 

  5. Zwierz, K., Gindzieński, A., Ostrowska, L., & Stankiewicz-Choroszucha, B. (1989). Metabolism of glycoconjugates in human gastric mucosa. Acta Medica Hungarica, 46, 275–288.

    PubMed  CAS  Google Scholar 

  6. Marciniak, J., Zalewska, A., Popko, J., & Zwierz, K. (2006). Optimization of an enzymatic method for the determination of lysosomal N-acetyl-beta-D-hexosaminidase and beta-glucuronidase in synovial fluid. Clinical Chemistry and Laboratory Medicine, 44, 933–937.

    Article  PubMed  CAS  Google Scholar 

  7. Zwierz, K., Zalewska, A., & Zoch-Zwierz, W. (1999). Isoenzymes of N-acetyl-β-hexosaminidase. Acta Biochimica Polonica, 46, 739–751.

    PubMed  CAS  Google Scholar 

  8. Czartoryska, B. (1977). Lysosomal exoglycosidases in catabolism of glycoheteropolymers. Postepy Biochemii, 23, 229–266.

    PubMed  CAS  Google Scholar 

  9. Itakura, T., Kuroki, A., Ishibashi, Y., et al. (2006). Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice. Biological and Pharmaceutical Bulletin, 29, 1564–1569.

    Article  PubMed  CAS  Google Scholar 

  10. Pennybacker, M., Liessem, B., Moczall, H., Tifft, C. J., Sandhoff, K., & Proia, R. L. (1996). Identification of domains in human beta-hexosaminidase that determine substrate specificity. The Journal of Biological Chemistry, 271, 17377–17382.

    Article  PubMed  CAS  Google Scholar 

  11. Sharma, R., Bukovac, S., Callahan, J., & Mahuran, D. (2003). A single site in human beta-hexosaminidase A binds both 6-sulfate-groups of hexosamines and the sialic acid moiety of GM2 ganglioside. Biochimica et Biophysica Acta, 1637, 113–118.

    PubMed  CAS  Google Scholar 

  12. Li, C., Qian, J., & Lin, J. S. (2006). Purification and characterization of alpha-L-fucosidase from human primary hepatocarcinoma tissue. World Journal of Gastroenterology, 12, 3770–3775.

    PubMed  CAS  Google Scholar 

  13. Winchester, B. (2005). Lysosomal metabolism of glycoproteins. Glycobiology, 15, 1R–15R.

    Article  PubMed  CAS  Google Scholar 

  14. Stypułkowska, A., Zwierz, P., & Zwierz, K. (2004). Endoglycosidases and glycoamidases. Postepy Biochemii, 50, 82–88.

    PubMed  Google Scholar 

  15. Shikhman, A. R., Brinson, D. C., & Lotz, M. (2000). Profile of glycosaminoglycan-degrading glycosidases and glycoside sulfatases secreted by human articular chondrocytes in homeostasis and inflammation. Arthritis and Rheumatism, 43, 1307–1314.

    Article  PubMed  CAS  Google Scholar 

  16. Dinarello, C. A. (1989). Interleukin-1 and its biologically related cytokines. Advances in Immunology, 44, 153–205.

    Article  PubMed  CAS  Google Scholar 

  17. Gubler, U., Chua, A. O., Stern, A. S., et al. (1986). Recombinant human interleukin 1 alpha: Purification and biological characterization. Journal of Immunology, 36, 2492–2497.

    Google Scholar 

  18. Popko, J., Marciniak, J., Zalewska, A., Maldyk, P., Rogalski, M., & Zwierz, K. (2006). The activity of exoglycosidases in the synovial membrane and knee fluid of patients with rheumatoid arthritis and juvenile idiopathic arthritis. Scandinavian Journal of Rheumatology, 35, 189–192.

    Article  PubMed  CAS  Google Scholar 

  19. Hofer, M., & Southwood, T. R. (2002). Classification of childhood arthritis. Best Practice and Research. Clinical Rheumatology, 16, 379–396.

    PubMed  Google Scholar 

  20. Arnett, F. C., Edworthy, S. M., Bloch, D. A., et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis and Rheumatism, 31, 315–324.

    Article  PubMed  CAS  Google Scholar 

  21. Vergne, P., Liagre, B., Bertin, P., et al. (1998). Methotrexate and cyclooxygenase metabolism in cultured human rheumatoid synoviocytes. The Journal of Rheumatology, 25, 433–440.

    PubMed  CAS  Google Scholar 

  22. Fraser, J. R. E., & Catt, K. J. (1961). Human synovial-cell culture use of a new method in a study of rheumatoid arthritis. Lancet, 2, 1437–1439.

    Article  PubMed  CAS  Google Scholar 

  23. Zwierz, K., Gindzienski, A., Glowacka, D., & Porowski, T. (1981). The degradation of glycoconjugates in the human gastric mucous membrane. Acta Medica Academiae Scientiarum Hungaricae, 38, 145–152.

    PubMed  CAS  Google Scholar 

  24. Pugh, D., & Walker, P. G. (1961). The localization of N-acetyl-beta-glucosaminidase in tissues. The Journal of Histochemistry and Cytochemistry, 9, 242–250.

    PubMed  CAS  Google Scholar 

  25. Berenbaum, F., Le Gars, L., Toussirot, E., et al. (2000). Marked elevation of serum N-acetyl-beta-D-hexosaminidase activity in rheumatoid arthritis. Clinical and Experimental Rheumatology, 18, 63–66.

    PubMed  CAS  Google Scholar 

  26. Clarris, B. J., Fraser, J. R., Ash, P., Leizer, T., & Hamilton, J. A. (1987). Interleukin-1 beta and interleukin-1 alpha stimulate the N-acetyl-beta-glucosaminidase activity of human synovial cells. Rheumatology International, 7, 271–275.

    Article  PubMed  CAS  Google Scholar 

  27. Lecomte, V., Knott, I., Burton, M., Remacle, J., & Raes, M. (1994). Cathepsin B and N-acetyl-beta-D-glucosaminidase in human synovial cells in culture: Effects of interleukin-1. Clinica Chimica Acta, 228, 143–159.

    Article  CAS  Google Scholar 

  28. Solavagione, E., Bourbouze, R., Percheron, F., Hecquet, C., & Adolphe, M. (1987). Partial characterization of intracellular and secreted glycosidases from rabbit articular chondrocytes in culture. Biochimie, 69, 239–243.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Popko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popko, J., Marciniak, J., Ilendo, E. et al. Profile of Exoglycosidases in Synovial Cell Cultures Derived from Human Synovial Membrane. Cell Biochem Biophys 51, 89–95 (2008). https://doi.org/10.1007/s12013-008-9018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9018-3

Keywords

Navigation