Skip to main content
Log in

On the Opening of an Insensitive Cyclosporin A Non-specific Pore by Phenylarsine Plus Mersalyl

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The purpose of this work was addressed to provide new information on the effect of thiol reagents on mitochondrial non-specific pore opening, and its response to cyclosporin A (CSA). To meet this proposal phenylarsine oxide (PHA) and mersalyl were employed as tools to induce permeability transition and CSA to inhibit it. PHA-induced mitochondrial dysfunction, characterized by Ca2+ efflux, swelling, and membrane de-energization, was inhibited by N-ethylmaleimide and CSA. Conversely, mersalyl failed to inhibit the inducing effect of phenylarsine oxide, it rather strengthened it. In addition, the effect of mersalyl was associated with cross-linking of membrane proteins. The content of membrane thiol groups accessible to react with PHA, mersalyl, and PHA plus mersalyl was determined. In all situations, permeability transition was accompanied by a significant decrease in the whole free membrane thiol content. Interestingly, it is also shown that mersalyl hinders the protective effect of cyclosporin A on PHA-induced matrix Ca2+ efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bernardi, P. (1999). Mitochondrial transport of cations: Channels, exchangers and permeability transition. Physiological Reviews, 79, 1127–1155.

    PubMed  CAS  Google Scholar 

  2. Zoratti, M., Szabó, I., & De Marchi, U. (2005). Mitochondrial permeability transition: How many doors to the house. Biochimica et Biophysica Acta, 1706, 40–52.

    Article  PubMed  CAS  Google Scholar 

  3. Kushnareva, Y. E., Haley, L. M., & Sokolove, P. M. (1999). The role of low (<or = 1mM) phosphate concentrations in regulation of mitochondrial permeability: Modulation of matrix free Ca2+ concentration. Archives of Biochemistry and Biophysics, 363, 155–162.

    Article  PubMed  CAS  Google Scholar 

  4. Chávez, E., & Holguín, J. A. (1988). Mitochondrial calcium release as induced by Hg2+. The Journal of Biological Chemistry, 263, 3582–3597.

    PubMed  Google Scholar 

  5. Gogvadze, V., Walter, P. B., & Ames, B. N. (2003). The role of Fe2+-induced lipid peroxidation in the initiation of the mitochondrial permeability transition. Archives of Biochemistry and Biophysics, 414, 255–260.

    PubMed  CAS  Google Scholar 

  6. Belyaeva, E. A., Glazunov, V. V., & Korotkov, S. M. (2004). Cd2+-promoted mitochondrial permeability transition: A comparison with other heavy metals. Acta Biochimica Polonica, 51, 545–551.

    PubMed  CAS  Google Scholar 

  7. Kowaltowski, A. J., Vercesi, A. E., & Castilho, R. F. (1997). Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: Correlation with mitochondrial permeability transition. Biochimica et Biophysica Acta, 1318, 395–402.

    Article  PubMed  CAS  Google Scholar 

  8. Korege, P., Goldhaber, J. I., & Weiss, J. N. (2001). Phenylarsine oxide induces mitochondrial permeability transition, hypercontracture and cardiac cell death. American Journal of Physiology. Heart and Circulatory Physiology, 280, H2203–H2213.

    Google Scholar 

  9. Balakirev, M. Y., & Zimmer, G. (2001). Mitochondrial injury by disulfiram: Two different mechanisms of the mitochondrial permeability transition. Chemico-Biological Interactions, 138, 299–311.

    Article  PubMed  CAS  Google Scholar 

  10. Crompton, M., Costi, A., & Hayat, L. (1987). Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. The Biochemical Journal, 245, 915–918.

    PubMed  CAS  Google Scholar 

  11. Kowaltowski, A. J., Netto, L. E.S., & Vercesi, A. E. (1998). The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. The Journal of Biological Chemistry, 273, 12766–12769.

    Article  PubMed  CAS  Google Scholar 

  12. Kushnareva, Y. E., & Sokolove, P. M. (2000). Prooxidants open both the mitochondrial permeability transition pore and a low conductance channel in the inner mitochondrial membrane. Archives of Biochemistry and Biophysics, 376, 377–378.

    Article  PubMed  CAS  Google Scholar 

  13. Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., & Vercesi, A. E. (1990). Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. The Journal of Biological Chemistry, 265, 19955–19960.

    PubMed  CAS  Google Scholar 

  14. Petronilli, P., Costantini, L., Scorrano, R., Colonna, S., & Bernardi, P. (1994). The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation reduction state of vecinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. The Journal of Biological Chemistry, 269, 16638–16642.

    PubMed  CAS  Google Scholar 

  15. Kanno, T., Sato, E. E., Muranaka, S., Fugita, H., Fujiwara, T., Utsumi, T., Inoue, M., & Utsumi, K. (2004). Oxidative stress underlies the mechanism for Ca2+-induced permeability transition of mitochondria. Free Radical Research, 38, 27–35.

    Article  PubMed  CAS  Google Scholar 

  16. García, N., García, J. J., Correa, F., & Chávez, E. (2005). The permeability transition pore as a pathway for the release of mitochondrial DNA. Life Science, 76, 2873–2880.

    Article  Google Scholar 

  17. Sanadi, D. R., Hughes, J. B., & Joshi, S. (1981). Activation of potassium-dependent H+ efflux from mitochondria by cadmium and phenylarsine oxide. Journal of Bioenergetics and Biomembranes, 13, 425–431.

    Article  PubMed  CAS  Google Scholar 

  18. Zazueta, C., Sánchez, C., García, N., & Correa, F. (2000). Possible involvement of the adenine nucleotide translocase in the activation of the permeability transition pore induced by cadmium. The International Journal of Biochemistry and Cell Biology, 32, 1093–1101.

    Article  CAS  Google Scholar 

  19. Chávez, E., Briones, R., Michel, B., Bravo, C., & Jay, D. (1985). Evidence for the involvement of dithiol groups in mitochondrial calcium transport: Studies with cadmium. Archives of Biochemistry and Biophysics, 242, 493–497.

    Article  PubMed  Google Scholar 

  20. Belyaeva, E. A., Glazunov, V. V., & Korotkov, S. M. (2004). Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: A proposed direct participation of respiratory complexes I and III. Chemico-Biological Interactions, 150, 253–270.

    Article  PubMed  CAS  Google Scholar 

  21. Diwan, J. J., Srivastava, J., Moore, C., & Haley, T. (1986). Stimulation of K+ flux into mitochondria by phenylarsine oxide. Journal of Bioenergetics and Biomembranes, 18, 123–124.

    Article  PubMed  CAS  Google Scholar 

  22. Costantini, P., Colonna, R., & Bernardi, P. (1998). Induction of the mitochondrial permeability transition by N-ethylmaleimide depends on secondary oxidation of critical thiol groups. Potentiation by copper-ortho-phenanthroline without dimerization of the adenine nucleotide translocase. Biochimica et Biophysica Acta, 1365, 385–392.

    Article  PubMed  CAS  Google Scholar 

  23. Lenartowicz, E., Bernardi, P., & Azzone, G. F. (1991). Phenylarsine oxide induces the cyclosporin A-sensitive membrane permeability transition in rat liver mitochondria. Journal of Bioenergetics and Biomembranes, 23, 679–688.

    Article  PubMed  CAS  Google Scholar 

  24. McStay, G. P., Clarke, S. J., & Halestrap, A. P. (2002). Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition. The Biochemical Journal, 367, 541–548.

    Article  PubMed  CAS  Google Scholar 

  25. LeQuoc, K., & LeQuoc, D. (1988). Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial permeability. Importance of the orientation of the nucleotide binding site. Archives of Biochemistry and Biophysics, 265, 249–257.

    Article  CAS  Google Scholar 

  26. Halestrap, A. P., & Brenner, C. (2003). The adenine nucleotide translocase: A central component of the mitochondrial permeability transition pore and a key player in cell death. Current Medical Chemistry, 10, 1507–1525.

    Article  CAS  Google Scholar 

  27. Haworth, R. A., & Hunter, D. R. (2000). Control of the mitochondrial permeability transition pore by high-affinity ADP/ATP translocase in permeabilized mitochondria. Journal of Bioenergetics and Biomembranes, 32, 91–96.

    Article  PubMed  CAS  Google Scholar 

  28. García, N., Zazueta, C., Pavón, N., & Chávez, E. (2005). Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity. Mitochondrion, 5, 272–281.

    Article  PubMed  Google Scholar 

  29. Tikhonova, I. M., Andreyev, A. Yu., Antonenko, Yu. N., Kaulen, A. D., Komrakov, A. Yu., & Skulachev, V. P. (1994). Ion permeability induced in artificial membranes by the ADP/ATP antiporter. FEBS Letters, 337, 231–234.

    Article  PubMed  CAS  Google Scholar 

  30. Brustovetsky, N., & Klingenberg, M. (1996). Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry, 35, 8483–8488.

    Article  PubMed  CAS  Google Scholar 

  31. Rük, A., Dolder, M., Wallimann, T., & Bridczka, D. (1998). Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Letters, 426, 97–101.

    Article  Google Scholar 

  32. Halestrap, A. P., Woodfield, K. Y., & Connern, C. P. (1997). Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. The Journal of Biological Chemistry, 272, 3346–3354.

    Article  PubMed  CAS  Google Scholar 

  33. Halestrap, A. P., McStay, G. P., & Clarke, S. J. (2002). The permeability transition pore complex: Another view. Biochimie, 84, 153–166.

    Article  PubMed  CAS  Google Scholar 

  34. Brustovetsky, N., & Klingenberg, M. (1994). The reconstituted ADP/ATP can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl. The Journal of Biological Chemistry, 269, 27327–27336.

    Google Scholar 

  35. Brustovetsky, N., & Dubinsky, J. M. (2000). Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria. The Journal of Neuroscience, 20, 8229–8237.

    PubMed  CAS  Google Scholar 

  36. Kanno, T., Fujita, H., Murnaka, S., Yano, H., Utsumi, T., Yoshioka, T., Inoue, M., & Utsumi, K. (2002). Mitochondrial swelling and cytochrome c release: Sensitivity to cyclosporin A and calcium. Physiological Chemistry and Physics and Medical NMR, 34, 91–102.

    PubMed  CAS  Google Scholar 

  37. Lowry, O. H., Rosebrough, N., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 262–275.

    Google Scholar 

  38. Scarpa, A., Brinley, F. J., Tiffert, T., & Dubyak, G. R. (1978). Metallochromic indicators of ionized calcium. Annals of the New York Academy of Sciences, 307, 86–112.

    Article  CAS  Google Scholar 

  39. Akerman, K. E. O., & Wikström, M. F. K. (1976). Safranine as a probe for mitochondrial membrane potential. FEBS Letters, 68, 191–197.

    Article  PubMed  CAS  Google Scholar 

  40. Ellman, G. L. (1958). A colorimetric method for determining low concentrations of mercaptans. Archives of Biochemistry and Biophysics, 74, 443–447.

    Article  PubMed  CAS  Google Scholar 

  41. Majima, E., Koike, H., & Hong, Y. M., Shinohara, Y., & Terada, H. (1993). Characterization of cysteine residues of mitochondrial ADP/ATP carrier with the SH-reagents eosin 5-maleimide and N-ethylmaleimide. The Journal of Biological Chemistry, 268, 22181–22187.

    PubMed  CAS  Google Scholar 

  42. Lakritz, J., Plopper, C., & Buckpitt, A. R. (1997). Validated high performance liquid chromatography-electrochemical method for determination of glutathione and glutathione disulfide in small tissue samples. Analytical Chemistry, 247, 63–68.

    CAS  Google Scholar 

  43. Stoner, C. D., & Sirak, H. D. (1978). Swelling and contraction of heart mitochondria suspended in ammonium phosphate. Journal of Bioenergetics and Biomembranes, 10, 75–88.

    Article  PubMed  CAS  Google Scholar 

  44. Broekemeier, K., Dempsey, M. E., & Pfeiffer, D. R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. The Journal of Biological Chemistry, 264, 7826–7830.

    PubMed  CAS  Google Scholar 

  45. Cardoso, C. M., Almeida, L. M., & Custodio, J. B. (2004). Protection of tamoxifen of mitochondrial thiols and NAD(P)H underlying the permeability transition induced by prooxidants. Chemico-Biological Interactions, 148, 149–161.

    Article  PubMed  CAS  Google Scholar 

  46. Bishop, G. M., Dringen, R., & Robinson, S. R. (2007). Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radical Biology & Medicine, 42, 1222–1230.

    Article  CAS  Google Scholar 

  47. Zazueta, C., Reyes-Vivas, H., Zafra, G., Sánchez, C. A., Vera, G., & Chávez, E. (1998). Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase. The International Journal of Biochemistry and Cell Biology, 30, 517–527.

    Article  CAS  Google Scholar 

  48. Tanveer, A., Virji, S., Andreeva, L., Totty, N. F., Hsuan, J., & Ward, J. M., Crompton, M. (1996). Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. European Journal of Biochemistry, 238, 166–172.

    Article  PubMed  CAS  Google Scholar 

  49. Novgorodov, S. A., Gudz, T. I., Jung, D. W., & Brierley, G. P. (1991). The nonspecific inner membrane pore of liver mitochondria. Modulation of cyclosporin sensitivity by ADP at carboxyatractyloside-sensitive and insensitive sites. Biochemical and Biophysical Research Communications, 180, 33–38.

    Article  PubMed  CAS  Google Scholar 

  50. Zazueta, C., Reyes-Vivas, H., Corona, N., Bravo, C., & Chávez, E. (1994). On the role of ADP to increase the inhibitory effect of cyclosporin on mitochondrial permeability transition. Biochemistry and Molecular Biology International, 33, 385–392.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grant 52417/67685 from CONACyT. The authors thank the technical assistance of Mr. Fernando Ibarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, N., Martínez-Abundis, E., Pavón, N. et al. On the Opening of an Insensitive Cyclosporin A Non-specific Pore by Phenylarsine Plus Mersalyl. Cell Biochem Biophys 49, 84–90 (2007). https://doi.org/10.1007/s12013-007-0047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0047-0

Keywords

Navigation