Skip to main content
Log in

An Overview of DNA and RNA Bindings to Antioxidant Flavonoids

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In this report we are examining how the antioxidant flavonoids can prevent DNA damage and what mechanism of action is involved in the process. Flavonoids are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. We study the interactions of quercetin (que), kaempferol (kae), and delphinidin (del) with DNA and transfer RNA in aqueous solution at physiological conditions, using constant DNA or RNA concentration 6.25 mmol (phosphate) and various pigment/polynucleotide(phosphate) ratios of 1/65 to 1 (DNA) and 1/48 to 1/8 (tRNA). The structural analysis showed quercetin, kaempferol, and delphinidin intercalate DNA and RNA duplexes with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants for DNA adducts K que = 7.25 (±0.65) × 104 M−1, K kae = 3.60 (±0.33) × 104 M−1, and K del = 1.66 (±0.25) × 104 M−1 and for tRNA adducts K que = 4.80 (±0.50) × 104 M−1, K kae = 4.65 (±0.45) × 104 M−1, and K del = 9.47 (±0.70) × 104 M−1. The stability of adduct formation is in the order of del>que>kae for tRNA and que>kae>del for DNA. Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial B to A-DNA transition occurs at high drug concentration, while tRNA remains in A-family structure. The antioxidant activity of flavonoids changes in order delphinidin>quercetin>kaempferol. The results show intercalated flavonoids can make them strong antioxidants to protect DNA from harmful free radical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Que:

Quercetin

Del:

Delphinidin

Kae:

Kaempferol

FT-IR:

Fourier transform infrared

References

  1. Yanmg, C. S., Lndau, J. M., Huang, M. T., & Newmark, H. L. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual Review of Nutrition, 21, 381–406.

    Article  Google Scholar 

  2. Ren, W., Qiao, Z., Wang, H., Zhu, L., & Zhang, L. (2003). Flavonoids: Promising anticancer agents. Medicinal Research Reviews, 23, 519–534.

    Article  PubMed  CAS  Google Scholar 

  3. Middelton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52, 673–751.

    Google Scholar 

  4. Halliwell, B., Aeschbach, R., Loliger, J., & Arouma. O. I. (1995). Antioxidant characterization. Food and Chemical Toxicology, 33, 617–618.

    Article  Google Scholar 

  5. Fleschin, S., Fleschin, M., Nita, S., Pavel, E., & Magearu, V. (2003). Free radicals mediated protein oxidation in biochemistry. Roun Biotechnology Letters, 5, 479–495.

    Google Scholar 

  6. Ferguson, L. R. (2001). Role of plant polyphenols in genomic stability. Mutation Research, 475, 89–111.

    PubMed  CAS  Google Scholar 

  7. Blackburn, G. M., & Gait, M. J. (1996). Nucleic acids in chemistry and biology, Chap. 8, Oxford University Press.

  8. Sakihama, Y., Cohen, M. F., Grace, S. C., & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant acitivities:phenlics-induced oxidative damage mediated by metals in plants. Toxicology, 177, 67–80.

    Article  PubMed  CAS  Google Scholar 

  9. Amic, D., Davidovic, D., Belso, N., & Trinajstic, N. (2003). Structure-radical scavenging activity relationships of flavonoids. Croatica Chemica Acta, 76, 55–61.

    CAS  Google Scholar 

  10. Husain, S. R., Cillard, J., & Cillard, P. (1987). Hydroxyl radical scavenging activity of flavonoids. Phytochemistry, 26, 2489–2491.

    Article  CAS  Google Scholar 

  11. Jagetia, G. C., Venkatesha, V. A., & Reddy, T. K. (2003). Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis, 18, 337–343.

    Article  PubMed  CAS  Google Scholar 

  12. Afanas’ev, I. B., Osttachovitch, E. A., Abramova, N. E., Korkina, L. G. (1995). Different antioxidant activities of bioflavonoid rutin in normal and iron-overloading rats. Biochemical Pharmacology, 50, 627–635. .

    Article  PubMed  CAS  Google Scholar 

  13. Win, W., Cao, Z., Peng, X., Trush, M. A., & Li, Y. (2002). Different effects of genistein and resveratrol on oxidative DNA damage in vitro. Mutatation Research, 513, 113–120.

    CAS  Google Scholar 

  14. Yoo, K., Guo, Q., & Pacter, L. (2000). Free radical scavenging of red ginseng aqueous extracts. Toxicology, 172, 149–156.

    Google Scholar 

  15. Fiorani, M., De Sancitis, R., De Bellis, R., & Dacha, M. (2002). Intracellular flavonoids as electron donors for extracellular ferricyanide reduction in human erythrocytes. Free Radical Biology & Medicine, 32, 64–72.

    Article  CAS  Google Scholar 

  16. Mark, D., Hutchenson, E.R., & Cheng, I. F. (2005). Stability of ferric complexes with 3-hydroxyflavone (Flavonol),5,7-dihydroxyflavone (chrysin) and 3′-4′-dihyroxyflavone. Journal of Agricultural and Food Chemistry, 53, 2953–2960.

    Article  CAS  Google Scholar 

  17. Mira, A. L., Fernandes, M. T., Santos, M., Rocha, R., Florenico, M. H., & Jennings, K. R. (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Research, 36, 1199–1208.

    Article  PubMed  CAS  Google Scholar 

  18. Jennings, K. R. (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Research, 36, 1199–1208.

    Article  PubMed  CAS  Google Scholar 

  19. Thulstrup, P. W., & Thormann, T. (1999). Interaction between ellagic acid and calf thymus DNA studied with flow linear dichroism UV–VIS spectroscopy. Biochemical and Biophysical Research Comunications, 254, 416–421.

    Article  CAS  Google Scholar 

  20. Walle, T., Vincent, T. S., & Walle, U. K. (2003). Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells. Biochemical Pharmacology, 65, 1603–1610.

    Article  PubMed  CAS  Google Scholar 

  21. Lodovici, M., GuglielmiI, M., & Meoni, P. D. (2001). Effect of natural phenolic acids on DNA oxidation in vitro. Food and Chemical Toxicology, 39, 1205–1210.

    Article  PubMed  CAS  Google Scholar 

  22. Lonneke, C. W., Hollman, C. H., Boots, A. W, & Kleeinjans, J. C. S. (2005). Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes. Mutatation Research, 582, 155–162.

    Google Scholar 

  23. Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., Diamantoglou, S., & Tajmir-Riahi, H. A. (2005). DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol and delphinidin. Journal of Biomolecular Structure & Dynamics, 22, 719–724.

    CAS  Google Scholar 

  24. Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., & Tajmir-Riahi, H. A. (2006). Interaction of antioxidant flavonoids with tRNA: Intercalation or external binding and comparison with flavonoid-DNA adducts. DNA & Cell Biology, 25, 116–123.

    Article  CAS  Google Scholar 

  25. Vijayalakshmi, R., Kanthimathi, M., & Subramanian, V. (2000). DNA cleavage by a chromium (III) complex. Biochemical and Biophysical Research Comunications, 271, 371–734.

    Google Scholar 

  26. Nejedly, K., Chladkova, J., Vorlickova, M., Hrabcova, I., & Kypr, J. (2005). Mapping the B-A conformational transition along plasmid DNA. Nucleic Acids Research, 33(1, e5), 1–8.

    Article  CAS  Google Scholar 

  27. Potaman, V. N., Bannikov, Y. A., & Shlyachtenko, L. S. (1980). Sedimentation of DNA in ethanol-water solution within the interval of B to A transition. Nucleic Acids Research, 8, 635–642.

    Article  PubMed  CAS  Google Scholar 

  28. Ahmed Ouameur, A., Malonga, H., Neault, J. F., Diamantoglou, S., & Tajmir-Riahi, H. A. (2004). Taxol interaction with DNA and RNA: Stability and structural features. Canadian Journal of Chemistry, 82, 1112–1118.

    Article  Google Scholar 

  29. Stephanos, J. J. (1996). Drug-protein interactions:Two-site binding of heterocylclic lignads to a monomeric hemogolobin. Journal of Inorganic Biochemistry, 62, 155–169.

    Article  PubMed  CAS  Google Scholar 

  30. Zhong, W., Wang, Y., Yu, J.-S., Liang, Y., Ni, K., & Tu, S. (2004). The interaction of human serum albumin with a novel antidiabetic agent-SU-118. Journal of Pharmaceutical Sciences, 93, 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  31. Dean, J. (2003). Flavone: The molecular and mechanistic study of how a simple flavonoid protects DNA from oxidative damage: Ph.D thesis, East Tennessee State University, USA.

  32. Freifelder, D. (1976). Physical Biochemistry, Chap. 15, W.H. Freeman and Company, New York.

  33. Lambert, J. B., Shurvell, H. F., Lightner, D. A., & Cooks, R. G. (1998). Organic Structural Spectroscopy, Chap. 10–11, Prentice-Hall, Inc., New Jersey.

  34. Taillandier, E., & Liquier, J. (1992). Infrared spectroscopy of DNA. Methods in Enzymology, 211, 307–335.

    Article  PubMed  CAS  Google Scholar 

  35. Ahmed Ouameur, A., & Tajmir-Riahi, H. A. (2004). Structural analysis of DNA interactions with biogenic polyamines and cobalt (III) hexamine studied by Fourier transform infrared and capillary electrophoresis. The Journal of Biological Chemistry, 279, 42041–42054.

    Article  CAS  Google Scholar 

  36. Cao, G., Sofic, E., & Prior, R. L. (1997). Antioxidant and antiprooxidant behaviour of flavonids:Structure-activity relationships. Free Radical Biology & Medicine, 22, 749–760.

    Article  CAS  Google Scholar 

  37. Wang, H., Cao, G., & Prior, R. L. (1997). Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 45, 304–309.

    Article  CAS  Google Scholar 

  38. Fukumoto, L. R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry, 48, 3597–3604.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We highly appreciate the financial supports from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Agricultural University of Athens and IKY (State Scholarships Foundation of Greece) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Tajmir-Riahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanakis, C.D., Tarantilis, P.A., Polissiou, M.G. et al. An Overview of DNA and RNA Bindings to Antioxidant Flavonoids. Cell Biochem Biophys 49, 29–36 (2007). https://doi.org/10.1007/s12013-007-0037-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0037-2

Keywords

Navigation