Skip to main content
Log in

Femtochemistry in enzyme catalysis: DNA photolyase

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Photolyase uses light energy to split UV-induced cyclobutane pyrimidine dimers in damaged DNA. This photoenzyme encompasses a series of elementary dynamical processes during repair function from early photoinitiation by a photoantenna molecule to enhance repair efficiency, to in vitro photoreduction through aromatic residues to reconvert the cofactor to the active form, and to final photorepair to fix damaged DNA. The corresponding series of dynamics include resonance energy transfer, intraprotein electron transfer, and intermolecular electron transfer, bond breaking-making rearrangements and back electron return, respectively. We review here our recent direct studies of these dynamical processes in real time, which showed that all these elementary reactions in the enzyme occur within subnanosecond timescale. Active-site solvation was observed to play a critical role in the continuous modulation of catalytic reactions. As a model system for enzyme catalysis, we isolated the enzyme–substrate complex in the transition-state region and mapped out the entire evolution of unmasked catalytic reactions of DNA repair. These observed synergistic motions in the active site reveal a perfect correlation of structural integrity and dynamical locality to ensure maximum repair efficiency on the ultrafast time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zewail, A. H. (2000). Femtochemistry: Atomic-scale dynamics of the chemical bond using ultrafast lasers. In T. Frängsmyr (Ed.), Les Prix Nobel: The Nobel prizes 1999 (p. 110). Stockholm: Almqvist & Wiksell.

  2. Zewail, A. H. (2006). 4D ultrafast electron diffraction, crystallography, and microscopy. Annual Review of Physical Chemistry, 57, 65–103.

    Article  PubMed  CAS  Google Scholar 

  3. Callender, R., & Dyer, R. B. (2006). Advances in time-resolved approaches to characterize the dynamical nature of enzymatic catalysis. Chemical Reviews, 106, 3031–3042.

    Article  PubMed  CAS  Google Scholar 

  4. Boehr, D. D., Dyson, H. J., & Wright, P. E. (2006). An NMR perspective on enzyme dynamics. Chemical Reviews, 106, 3055–3079.

    Article  PubMed  CAS  Google Scholar 

  5. Wolynes, P. G. (2005). Energy landscapes and solved protein-folding problems. Philosophical Transactions of the Royal Society of London, A, 363, 453–464.

    Article  CAS  Google Scholar 

  6. Frauenfelder, H., Sligar, S. G., & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science, 254, 1598–1603.

    Article  PubMed  CAS  Google Scholar 

  7. Krushelnitsky, A., & Reichert, D. (2005). Solid-state NMR and protein dynamics. Progress in NMR Spectroscopy, 47, 1–25.

    Article  CAS  Google Scholar 

  8. Kay, L. E. (2005). NMR studies of protein structure and dynamics. Journal of Magnetic Resonance, 173, 193–207.

    Article  PubMed  CAS  Google Scholar 

  9. Nagy, A., Prokhorenko, V., & Miller, R. J. D. (2006). Do we live in a quantum world? Advances in multidimensional coherent spectroscopies refine our understanding of quantum coherences and structural dynamics of biological systems. Current Opinion in Structural Biology, 16, 654–663.

    Article  PubMed  CAS  Google Scholar 

  10. Slayton, R. M., & Anfinrud, P. A. (1997). Time-resolved mid-infrared spectroscopy: Methods and biological applications. Current Opinion in Structural Biology, 7, 717–721.

    Article  PubMed  CAS  Google Scholar 

  11. Sancar, A. (2003). Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical Reviews, 103, 2203–2237.

    Article  PubMed  CAS  Google Scholar 

  12. Park, H. W., Kim, S. T., Sancar, A., & Deisenhofer, J. (1995). Crystal structure of DNA photolyase from Escherichia coli. Science, 268, 1866–1872.

    Article  PubMed  CAS  Google Scholar 

  13. Sancar, G. B., Jorns, M. S., Payne, G., Fluke, D. J., Rupert, C. S., & Sancar, A. (1987). Action mechanism of Escherichia coli DNA photolyase. III. Photolysis of the enzyme–substrate complex and the absolute action spectrum. Journal of Biological Chemistry, 262, 492–498.

    PubMed  CAS  Google Scholar 

  14. Payne, G., & Sancar, A. (1990). Absolute action spectrum of E-FADH2 and E-FADH2-MTHF forms of Escherichia coli DNA photolyase. Biochemistry, 29, 7715–7727.

    Article  PubMed  CAS  Google Scholar 

  15. Ramsey, A. J., Alderfer, J. L., & Jorns, M. S. (1992). Energy transduction during catalysis by Escherichia coli DNA photolyase. Biochemistry, 31, 7134–7142.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, S. T., Heelis, P. F., Okamura, T., Hirata, Y., Mataga, N., & Sancar, A. (1991). Determination of rates and yields of interchromophore (Folate→Flavin) energy transfer and intermolecular (Flavin→DNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy. Biochemistry, 30, 11262–11270.

    Article  PubMed  CAS  Google Scholar 

  17. Langenbacher, T., Zhao, X. D., Bieser, G., Heelis, P. F., Sancar, A., & Michel-Beyerle, M. E. (1997). Substrate and temperature dependence of DNA photolyase repair activity examined with ultrafast spectroscopy. Journal of the American Chemical Society, 119, 10532–10536.

    Article  CAS  Google Scholar 

  18. MacFarlane, A. W., & Stanley, R. J. (2003). Cis-syn thymidine dimer repair by DNA photolyase in real time. Biochemistry, 42, 8558–8568.

    Article  PubMed  CAS  Google Scholar 

  19. Sanders, D. B., & Wiest, O. (1999). A model for the enzyme–substrate complex of DNA photolyase and photodamaged DNA. Journal of the American Chemical Society, 121, 5127–5134.

    Article  CAS  Google Scholar 

  20. Antony, J., Medvedev, D. M., & Stuchebrukhov, A. A. (2000). Theoretical study of electron transfer between the photolyase catalytic cofactor FADH and DNA thymine dimer. Journal of the American Chemical Society, 122, 1057–1065.

    Article  CAS  Google Scholar 

  21. Komori, H., Masui, R., Kuramitsu, S., Yokoyama, S., Shibata, T., Inoue, Y., & Miki, K. (2001). Crystal structure of thermostable DNA photolyase: Pyrimidine-dimer recognition mechanism. Proceedings of the National Academy of Sciences of the United States of America, 98, 13560–13565.

    Article  PubMed  CAS  Google Scholar 

  22. Mees, A., Klar, T., Gnau, P., Hennecke, U., Eker, A. P. M., Carell, T., & Essen, L. O. (2004). Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science, 306, 1789–1793.

    Article  PubMed  CAS  Google Scholar 

  23. Kao, Y.-T., Saxena, C., Wang, L., Sancar, A., & Zhong, D. (2005). Direct observation of thymine dimer repair in DNA by photolyase. Proceedings of the National Academy of Sciences of the United States of America, 102, 16128–16132.

    Article  PubMed  CAS  Google Scholar 

  24. Saxena, C., Sancar, A., & Zhong, D. (2004). Femtosecond dynamics of DNA photolyase: Energy transfer of antenna initiation and electron transfer of cofactor reduction. Journal of Physical Chemistry B, 108, 18026–18033.

    Article  CAS  Google Scholar 

  25. Kim, S. T., Sancar, A., Essenmacher, C., & Babcock, G. T. (1993). Time-resolved EPR studies with DNA photolyase: Excited-state FADH abstracts an electron from Trp-306 to generate FADH, the catalytically active form of the cofactor. Proceedings of the National Academy of Sciences of the United States of America, 90, 8023–8027.

    Article  PubMed  CAS  Google Scholar 

  26. Li, Y. F., Heelis, P. F., & Sancar, A. (1991). Active-site of DNA Photolyase: Tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA-repair in vitro. Biochemistry, 30, 6322–6329.

    Article  PubMed  CAS  Google Scholar 

  27. Heelis, P. F., Payne, G., & Sancar, A. (1987). Photochemical properties of Escherichia coli DNA photolyase: Selective photodecomposition of the second chromophore. Biochemistry, 26, 4634–4640.

    Article  PubMed  CAS  Google Scholar 

  28. Heelis, P. F., Okamura, T., & Sancar, A. (1990). Excited-state properties of Escherichia coli DNA photolyase in the picosecond to millisecond time scale. Biochemistry, 29, 5694–5698.

    Article  PubMed  CAS  Google Scholar 

  29. Aubert, C., Vos, M. H., Mathis, P., Eker, A. P. M., & Brettel, K. (2000). Intraprotein radical transfer during photoactivation of DNA photolyase. Nature, 405, 586–590.

    Article  PubMed  CAS  Google Scholar 

  30. Byrdin, M., Eker, A. P. M., Vos, M. H., & Brettel, K. (2003). Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation. Proceedings of the National Academy of Sciences of the United States of America, 100, 8676–8681.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, H. Y., Saxena, C., Quan, D. H., Sancar, A., & Zhong, D. (2005). Femtosecond dynamics of flavin cofactor in DNA photolyase: Radical reduction, local solvation, and charge recombination. Journal of Physical Chemistry B, 109, 1329–1333.

    Article  CAS  Google Scholar 

  32. Defelippis, M. R., Murthy, C. P., Broitman, F., Weinraub, D., Faraggi, M., & Klapper, M. H. (1991). Electrochemical properties of tyrosine phenoxy and tryptophan indolyl radicals in peptides and amino acid analogs. Journal of Physical Chemistry, 95, 3416–3419.

    Article  CAS  Google Scholar 

  33. Heelis, P. F., Deeble, D. J., Kim, S. T., & Sancar, A. (1992). Splitting of cis-syn cyclobutane thymine–thymine dimers by radiolysis and its relevance to enzymatic photoreactivation. International Journal of Radiation Biology, 62, 137–143.

    PubMed  CAS  Google Scholar 

  34. Mulliken, R. S. (1952). Molecular compounds and their spectra II. Journal of the American Chemical Society, 74, 811–824.

    Article  CAS  Google Scholar 

  35. Cheng, P. Y., Zhong, D., & Zewail, A. H. (1996). Femtosecond real-time probing of reactions. XXI. Direct observation of transition-state dynamics and structure in charge-transfer reactions. Journal of Chemical Physics, 105, 6216–6248.

    Article  CAS  Google Scholar 

  36. Cheung, M. S., Daizadeh, I., Stuchebrukhov, A. A., & Heelis, P. F. (1999). Pathways of electron transfer in Escherichia coli DNA photolyase: Trp306 to FADH. Biophysical Journal, 76, 1241–1249.

    PubMed  CAS  Google Scholar 

  37. Shida, T., & Hamill, W. H. (1966). Molecular ions in radiation chemistry. II. Aromatic-hydrocarbon cations in CCl4 at 77 K. Journal of Chemical Physics, 44, 2375–2377.

    Article  CAS  Google Scholar 

  38. Mataga, N., Chosrowjan, H., Taniguchi, S., Tanaka, F., Kido, N., & Kitamura, M. (2002). Femtosecond fluorescence dynamics of flavoproteins: Comparative studies on flavodoxin, its site-directed mutants, and riboflavin binding protein regarding ultrafast electron transfer in protein nanospaces. Journal of Physical Chemistry B, 106, 8917–8920.

    Article  CAS  Google Scholar 

  39. Zhong, D., & Zewail, A. H. (2001). Femtosecond dynamics of flavoproteins: Charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme. Proceedings of the National Academy of Sciences of the United States of America, 98, 11867–11872.

    Article  PubMed  CAS  Google Scholar 

  40. Mataga, N., Chosrowjan, H., Shibata, Y., Tanaka, F., Nishina, Y., Shiga, K. (2000). Dynamics and mechanisms of ultrafast fluorescence quenching reactions of flavin chromophores in protein nanospace. Journal of Physical Chemistry B, 104, 10667–10677.

    Article  CAS  Google Scholar 

  41. Mattos, C. (2002). Protein–water interactions in a dynamic world. Trends in Biochemical Sciences, 27, 203–208.

    Article  PubMed  CAS  Google Scholar 

  42. Kim, S. T., & Sancar, A. (1991). Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase. Biochemistry, 30, 8623–8630.

    Article  PubMed  CAS  Google Scholar 

  43. Tamada, T., Kitadokoro, K., Higuchi, Y., Inaka, K., Yasui, A., de Ruiter, P. E., Eker, A. P. M., & Miki, K. (1997). Crystal structure of DNA photolyase from Anacystis nidulans. Nature Structural & Molecular Biology, 4, 887–891.

    Article  CAS  Google Scholar 

  44. Seidel, C. A. M., Schulz, A., & Sauer, M. H. M. (1996). Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. Journal of Physical Chemistry, 100, 5541–5553.

    Article  CAS  Google Scholar 

  45. Song, Q. H., Tang, W. M., Hei, X. M., Wang, H. B., Guo, Q. X., & Yu, S. Q. (2005). Efficient photosensitized splitting of thymine dimer by a covalently linked tryptophan in solvents of high polarity. European Journal of Organic Chemistry, 1097–1106.

  46. Schramm, V. L. (2005). Enzymatic transition states and transition state analogues. Current Opinion in Structural Biology, 15, 604–613.

    Article  PubMed  CAS  Google Scholar 

  47. Wolfenden, R. (2003). Thermodynamic and extrathermodynamic requirements of enzyme catalysis. Biophysical Chemistry, 105, 559–572.

    Article  PubMed  CAS  Google Scholar 

  48. Boehr, D. D., McElheny, D., Dyson, H. J., & Wright, P. E. (2006). The dynamic energy landscape of dihydrofolate reductase catalysis. Science, 313, 1638–1642.

    Article  PubMed  CAS  Google Scholar 

  49. Vendruscolo, M., & Dobson, C. M. (2006). Dynamic visions of enzymatic reactions. Science, 313, 1586–1587.

    Article  PubMed  CAS  Google Scholar 

  50. Hammes-Schiffer, S., & Benkovic, S. J. (2006). Relating protein motion to catalysis. Annual Review of Biochemistry, 75, 519–541.

    Article  PubMed  CAS  Google Scholar 

  51. Olsson, M. H. M., Parson, W. W., & Warshel, A. (2006). Dynamical contributions to enzyme catalysis: Critical tests of a popular hypothesis. Chemical Reviews, 106, 1737–1756.

    Article  PubMed  CAS  Google Scholar 

  52. Pineda, J., & Schwartz, S. D. (2006). Protein dynamics and catalysis: The problems of transition state theory and the subtlety of dynamic control. Philosophical Transactions of the Royal Society of London, B, 361, 1433–1438.

    Article  CAS  Google Scholar 

  53. Warshel, A., Sharma, P. K., Kato, M., Xiang, Y., Liu, H. B., & Olsson, M. H. M. (2006). Electrostatic basis for enzyme catalysis. Chemical Reviews, 106, 3210–3235.

    Article  PubMed  CAS  Google Scholar 

  54. Pu, J. Z., Gao, J., & Truhlar, D. G. (2006). Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chemical Reviews, 106, 3140–3169.

    Article  PubMed  CAS  Google Scholar 

  55. Antoniou, D., Basner, J., Núñez, S., & Schwartz, S. D. (2006). Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chemical Reviews, 106, 3170–3187.

    Article  PubMed  CAS  Google Scholar 

  56. Agarwal, P. K. (2006). Enzymes: An integrated view of structure, dynamics and function. Microbial Cell Factories, 5, 2.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang, X. Y., & Houk, K. N. (2005). Why enzymes are proficient catalysts: Beyond the Pauling paradigm. Accounts of Chemical Research, 38, 379–385.

    Article  PubMed  CAS  Google Scholar 

  58. Bruice, T. C. (2006). Computational approaches: Reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency. Chemical Reviews, 106, 3119–3139.

    Article  PubMed  CAS  Google Scholar 

  59. Gao, J., Ma, S. H., Major, D. T., Nam, K., Pu, J. Z., & Truhlar, D. G. (2006). Mechanisms and free energies of enzymatic reactions. Chemical Reviews, 106, 3188–3209.

    Article  PubMed  CAS  Google Scholar 

  60. Hammes-Schiffer, S. (2006). Hydrogen tunneling and protein motion in enzyme reactions. Accounts of Chemical Research, 39, 93–100.

    Article  PubMed  CAS  Google Scholar 

  61. Onuchic, J. N., Kobayashi, C., Miyashita, O., Jennings, P., & Baldridge, K. K. (2006). Exploring biomolecular machines: Energy landscape control of biological reactions. Philosophical Transactions of the Royal Society of London, B, 361, 1439–1443.

    Article  CAS  Google Scholar 

  62. Eisenmesser, E. Z., Bosco, D. A., Akke, M., & Kern, D. (2002). Enzyme dynamics during catalysis. Science, 295, 1520–1523.

    Article  PubMed  CAS  Google Scholar 

  63. Eisenmesser, E. Z., Millet, O., Labeikovsky, W., Korzhnev, D. M., Wolf-Watz, M., Bosco, D. A., Skalicky, J. J., Kay, L. E., & Kern, D. (2005). Intrinsic dynamics of an enzyme underlies catalysis. Nature, 438, 117–121.

    Article  PubMed  CAS  Google Scholar 

  64. Garcia-Viloca, M., Gao, J., Karplus, M., & Truhlar, D. G. (2004). How enzymes work: Analysis by modern rate theory and computer simulations. Science, 303, 186–195.

    Article  PubMed  CAS  Google Scholar 

  65. Benkovic, S. J., & Hammes-Schiffer, S. (2003). A perspective on enzyme catalysis. Science, 301, 1196–1202.

    Article  PubMed  CAS  Google Scholar 

  66. Benkovic, S. J., & Hammes-Schiffer, S. (2006). Enzyme motions inside and out. Science, 312, 208–209.

    Article  PubMed  CAS  Google Scholar 

  67. Masgrau, L., Roujeinikova, A., Johannissen, L. O., Hothi, P., Basran, J., Ranaghan, K. E., Mulholland, A. J., Sutcliffe, M. J., Scrutton, N. S., Leys, D. (2006). Atomic description of an enzyme reaction dominated by proton tunneling. Science, 312, 237–241.

    Article  PubMed  CAS  Google Scholar 

  68. Knapp, M. J., Rickert K., Klinman, J. P. (2002). Temperature-dependent isotope effects in soybean lipoxygenase-1: Correlating hydrogen tunneling with protein dynamics. Journal of the American Chemical Society, 124, 3865–3874.

    Article  PubMed  CAS  Google Scholar 

  69. Knapp, M. J., Klinman, J. P. (2002). Environment coupled hydrogen tunneling-Linking catalysis to dynamics. European Journal of Biochemistry, 269, 3113–3121.

    Article  PubMed  CAS  Google Scholar 

  70. Klinman, J. P. (2006). Linking protein structure and dynamics to catalysis: The role of hydrogen tunnelling. Philosophical Transactions of the Royal Society of London, B, 361, 1323–1331.

    Article  CAS  Google Scholar 

  71. Wang, L., Goodey, N. M., Benkovic, S. J., Kohen, A. (2006). Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Proceedings of the National Academy of Sciences of the United States of America, 103, 15753–15758.

    Article  PubMed  CAS  Google Scholar 

  72. Wong, K. F., Selzer, T., Benkovic, S. J., & Hammes-Schiffer, S. (2005). Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Proceedings of the National Academy of Sciences of the United States of America, 102, 6807–6812.

    Article  PubMed  CAS  Google Scholar 

  73. Zhong, D. (2007). Ultrafast catalytic processes in enzymes. Current Opinion in Chemical Biology, 11, 174–181.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the Packard Foundation Fellowship to DZ and the National Institute of Health to AS and DZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, YT., Saxena, C., Wang, L. et al. Femtochemistry in enzyme catalysis: DNA photolyase. Cell Biochem Biophys 48, 32–44 (2007). https://doi.org/10.1007/s12013-007-0034-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0034-5

Keywords

Navigation