Skip to main content
Log in

Mitochondrial Sirtuins and Doxorubicin-induced Cardiotoxicity

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) is the most effective and extensively used treatment for many tumors. However, its clinical use is hampered by its cardiotoxicity. DOX-induced mitochondrial dysfunction, which causes reactive oxygen species (ROS) generation, cardiomyocyte death, bioenergetic failure, and decreased cardiac function, is a very important mechanism of cardiotoxicity. These cellular processes are all linked by mitochondrial sirtuins (SIRT3–SIRT4). Mitochondrial sirtuins preserve mitochondrial function by increasing mitochondrial metabolism, inhibiting ROS generation by activating the antioxidant enzyme manganese-dependent superoxide dismutase (MnSOD), decreasing apoptosis by activating the forkhead homeobox type O (FOXO) and P53 pathways, and increasing autophagy through AMP-activated protein kinase (AMPK)/mTOR signaling. Thus, sirtuins function at the control point of many mechanisms involved in DOX-induced cardiotoxicity. In this review, we focus on the role of mitochondrial sirtuins in mitochondrial biology and DOX-induced cardiotoxicity. A further aim is to highlight other mitochondrial processes, such as autophagy (mitophagy) and mitochondrial quality control (MQC), for which the effect of mitochondrial sirtuins on cardiotoxicity is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.

    CAS  PubMed  Google Scholar 

  2. Bernstein, D. (2018). Anthracycline Cardiotoxicity: Worrisome Enough to Have You Quaking? Circulation Research, 122, 188–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Medicinal Research Reviews, 34, 106–135.

    CAS  PubMed  Google Scholar 

  4. Catanzaro, M. P., Weiner, A., Kaminaris, A., Li, C., Cai, F., & Zhao, F., et al. (2019). Doxorubicin-induced cardiomyocyte death is mediated by unchecked mitochondrial fission and mitophagy. The FASEB Journal, 33, 11096–11108.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Anker, M.S., Hadzibegovic, S., Lena, A., Belenkov, Y., Bergler-Klein, J., de Boer, R.A., Farmakis, D., von Haehling, S., Iakobishvili, Z., Maack, C., Pudil, R., Skouri, H., Cohen-Solal, A., Tocchetti, C.G., Coats, A.J.S., Seferovic, P.M., & Lyon, A.R. and Heart Failure Association Cardio-Oncology Study Group of the European Society of, C. (2019). Recent advances in cardio-oncology: a report from the “Heart Failure Association 2019 and World Congress on Acute Heart Failure 2019.” ESC Heart Fail, 6, 1140–1148.

    Google Scholar 

  6. Renu, K., & V, G.A., P, B.T. and Arunachalam, S. . (2018). Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. European Journal of Pharmacology, 818, 241–253.

    CAS  PubMed  Google Scholar 

  7. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L., Lyu, Y., Liu, L., & Yeh, E. T. H. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.

    PubMed  Google Scholar 

  8. Ma, W., Wei, S., Zhang, B., & Li, W. (2020). Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Frontiers in Cell and Developmental Biology, 8, 434.

    PubMed  PubMed Central  Google Scholar 

  9. Tadokoro, T., Ikeda, M., Ide, T., Deguchi, H., Ikeda, S., & Okabe, K., et al. (2020). Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight, 5, e132747.

    PubMed Central  Google Scholar 

  10. Jenelle Govender BL, Erna Marais, Anna Mart Engelbrecht (2014) Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity a review of the protective role of melatonin. Journal of Pineal Research. 57: 367–380

  11. Carrico, C. M., He, J. G., Gibson, W., Verdin, B. W., & E. . (2018). The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metabolism, 27, 497–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bergmann, L.L., Alexander Bross, Christoph Altinoluk-Hambüchen, Simone Fey, Iris Overbeck, Nina Stefanski, Anja Wiek, Constanze, Kefalas, A., Verhülsdonk, P., Mielke, C., Sohn, D., Stühler, K., Hanenberg, H., Jänicke, R.U., Scheller, J., Reichert, A.S., Ahmadian, M.R. and Piekorz, R.P. (2020). Subcellular localization and mitotic interactome analyses identify SIRT4 as a centrosomally localized and microtubule associated protein. Cells 9: 1950

  13. Du, Y. H., Qu, H., Wang, S., & J., Hua, C., Zhang, J., Wei, P., He, X., Hao, J., Liu, P., Yang, F., Li, T. and Wei, T. . (2018). SIRT5 deacylates metabolism-related proteins and attenuates hepatic steatosis in ob/ob mice. EBioMedicine, 36, 347–357.

    PubMed  PubMed Central  Google Scholar 

  14. Xiaoqiang Tang, X.-F.C., Chen, H.-Z., & Liu, D.-P. (2017). Mitochondrial Sirtuins in cardiometabolic diseases. Clin Sci (Lond), 131, 2063–2078.

    Google Scholar 

  15. van de Ven, R. A. H. S., Haigis, D., & M. C. . (2017). Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol Med, 23, 320–331.

    PubMed  PubMed Central  Google Scholar 

  16. Du Qiong, B. Z., Zha, Q., & Bo, Yu. (2017). Sirt3 attenuates doxorubicin-induced cardiac hypertrophy and mitochondrial dysfunction via suppression of Bnip3. Am J Transl Res., 9(7), 3360–3373.

    Google Scholar 

  17. Pillai, V. B. B., Sharp, S., Fang, W., Kim, Y. H., Gupta, G., & Samant, M., et al. (2016). Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. Am J Physiol Heart Circ Physiol, 310, H962-972.

    PubMed  PubMed Central  Google Scholar 

  18. Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., & Lombard, D. B., et al. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 464, 121–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bong-Hyun Ahn, H.-S.K., Song, S., Lee, I. H., Liu, J., Vassilopoulos, A., Deng, C.-X., & Finkel, T. (2008). A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. PNAS, 105(38), 14447–14452.

    PubMed  Google Scholar 

  20. Liu, L., Xie, B., Fan, M., Candas-Green, D., Jiang, J. X., & Wei, R., et al. (2020). Low-Level Saturated Fatty Acid Palmitate Benefits Liver Cells by Boosting Mitochondrial Metabolism via CDK1-SIRT3-CPT2 Cascade. Developmental Cell, 52(196–209), e199.

    Google Scholar 

  21. Qiao, Y., Xu, L., Tao, X., Yin, L., Qi, Y., & Xu, Y., et al. (2018). Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicology Letters, 284, 37–45.

    CAS  PubMed  Google Scholar 

  22. Yang, Y., Wang, W., Xiong, Z., Kong, J., Qiu, Y., Shen, F., & Huang, Z. (2016). Activation of SIRT3 attenuates triptolide-induced toxicity through closing mitochondrial permeability transition pore in cardiomyocytes. Toxicology in Vitro, 34, 128–137.

    CAS  PubMed  Google Scholar 

  23. Sadhukhan, S., Liu, X., Ryu, D., Nelson, O. D., Stupinski, J. A., & Li, Z., et al. (2016). Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A, 113, 4320–4325.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kane, A. E., & Sinclair, D. A. (2018). Sirtuins and NAD(+) in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circulation Research, 123, 868–885.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo, L., Zhou, S. R., Wei, X. B., Liu, Y., Chang, X. X., & Liu, Y., et al. (2016). Acetylation of Mitochondrial Trifunctional Protein alpha-Subunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease. Molecular and Cellular Biology, 36, 2553–2567.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Laurent, G., German, N. J., Saha, A. K., de Boer, V. C., Davies, M., & Koves, T. R., et al. (2013). SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Molecular Cell, 50, 686–698.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gu, L., & Z.Y.L.X.T.X.L.B., Li Y. . (2020). Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene, 39, 2437–2449.

    CAS  PubMed  Google Scholar 

  28. Chen, B., Zang, W., Wang, J., Huang, Y., He, Y., & Yan, L., et al. (2015). The chemical biology of sirtuins. Chemical Society Reviews, 44, 5246–5264.

    CAS  PubMed  Google Scholar 

  29. Shimazu, T., Hirschey, M. D., & Hua, L., Dittenhafer-Reed, K. E., Schwer, B., Lombard, D. B., et al. (2010). SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metabolism, 12, 654–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rardin, M. J., He, W., Nishida, Y., Newman, J. C., Carrico, C., & Danielson, S. R., et al. (2013). SIRT5 Regulates the Mitochondrial Lysine Succinylome and Metabolic Networks. Cell Metabolism, 18, 920–933.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dienel, G. A. (2019). Brain Glucose Metabolism: Integration of Energetics with Function. Physiological Reviews, 99, 949–1045.

    CAS  PubMed  Google Scholar 

  32. Fan, J., Shan, C., Kang, H.-B., Elf, S., Xie, J., & Tucker, M., et al. (2014). Tyr Phosphorylation of PDP1 Toggles Recruitment between ACAT1 and SIRT3 to Regulate the Pyruvate Dehydrogenase Complex. Molecular Cell, 53, 534–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ozden, O., Park, S.-H., Wagner, B. A., Yong Song, H., Zhu, Y., & Vassilopoulos, A., et al. (2014). SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radical Biology and Medicine, 76, 163–172.

    CAS  PubMed  Google Scholar 

  34. Cui, Y., Qin, L., Wu, J., Qu, X., Hou, C., & Sun, W., et al. (2015). SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells. PLoS ONE, 10, e0129834.

    PubMed  PubMed Central  Google Scholar 

  35. Fujino, T. K., Ishikawa, J., Morikawa, M., Yamamoto, K., & T. T. . (2001). Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. Journal of Biological Chemistry, 276, 11420–11426.

    CAS  Google Scholar 

  36. Mathias, R. A., Greco, T. M., Oberstein, A., Budayeva, H. G., Chakrabarti, R., & Rowland, E. A., et al. (2014). Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell, 159, 1615–1625.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Someya, S., Yu, W., Hallows, W. C., Xu, J., Vann, J. M., & Leeuwenburgh, C., et al. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 143, 802–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sundaresan, N. R., Gupta, M., Kim, G., Rajamohan, S. B., Isbatan, A., & Gupta, M. P. (2009). Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest, 119, 2758–2771.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jing, E., Emanuelli, B., Hirschey, M. D., Boucher, J., Lee, K. Y., & Lombard, D., et al. (2011). Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A, 108, 14608–14613.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Z. S., Wang, R., Chen, G., Li, Z., Zhao, Y., & Liu, Y., et al. (2020). SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. Redox Biol, 28, 101343.

    CAS  PubMed  Google Scholar 

  41. Liu, B., Che, W., Zheng, C., Liu, W., Wen, J., & Fu, H., et al. (2013). SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes. Cellular Physiology and Biochemistry, 32, 1050–1059.

    CAS  PubMed  Google Scholar 

  42. Zhou, L., Wang, F., Sun, R., Chen, X., Zhang, M., & Xu, Q., et al. (2016). SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Reports, 17, 811–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ling Liu, Q. W., Zhao, B., Qian, Wu., & Wang, P. (2019). Exogenous nicotinamide adenine dinucleotide administration alleviates ischemia/reperfusion-induced oxidative injury in isolated rat hearts via Sirt5-SDH-succinate pathway. European Journal of Pharmacology, 858, 172520.

    PubMed  Google Scholar 

  44. Luo, Y. X., Tang, X., An, X. Z., Xie, X. M., Chen, X. F., & Zhao, X., et al. (2017). SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. European Heart Journal, 38, 1389–1398.

    CAS  PubMed  Google Scholar 

  45. Jianxia Shi, Q. W., Li, H., & Huang, Q. (2017). SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis. Exp Ther Med, 13, 342–348.

    Google Scholar 

  46. Liu, M., Wang, Z., Ren, M., Yang, X., Liu, B., & Qi, H., et al. (2019). SIRT4 regulates PTEN stability through IDE in response to cellular stresses. The FASEB Journal, 33, 5535–5547.

    CAS  PubMed  Google Scholar 

  47. Green, D. R., Galluzzi, L., & Kroemer, G. (2014). Metabolic control of cell death. Science, 345, 1250256–1250256.

    PubMed  PubMed Central  Google Scholar 

  48. Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology, 11, 872–884.

    CAS  PubMed  Google Scholar 

  49. Samant, S. A., Zhang, H. J., Hong, Z., Pillai, V. B., Sundaresan, N. R., & Wolfgeher, D., et al. (2014). SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Molecular and Cellular Biology, 34, 807–819.

    PubMed  PubMed Central  Google Scholar 

  50. Lang, A., Anand, R., Altinoluk-Hambuchen, S., Ezzahoini, H., Stefanski, A., & Iram, A., et al. (2017). SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging (Albany NY), 9, 2163–2189.

    CAS  Google Scholar 

  51. Pena-Blanco, A., Haschka, M.D., Jenner, A., Zuleger, T., Proikas-Cezanne, T., Villunger, A. and Garcia-Saez, A.J. (2020). Drp1 modulates mitochondrial stress responses to mitotic arrest. Cell Death Differ. doi: https://doi.org/10.1038/s41418-020-0527-y

  52. Karbowski, R.J.Y. (2005). Mitochondrial fission in apoptosis. nature VOLUME 6.

  53. Morigi, M., Perico, L., Rota, C., Longaretti, L., Conti, S., & Rottoli, D., et al. (2015). Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest, 125, 715–726.

    PubMed  PubMed Central  Google Scholar 

  54. Fu, L., Dong, Q., He, J., Wang, X., Xing, J., & Wang, E., et al. (2017). SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene, 36, 2724–2736.

    CAS  PubMed  Google Scholar 

  55. Laurent, G., de Boer, V. C., Finley, L. W., Sweeney, M., Lu, H., & Schug, T. T., et al. (2013). SIRT4 represses peroxisome proliferator-activated receptor alpha activity to suppress hepatic fat oxidation. Molecular and Cellular Biology, 33, 4552–4561.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Guedouari, H., Daigle, T., Scorrano, L., & Hebert-Chatelain, E. (2017). Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochim Biophys Acta Mol Cell Res, 1864, 169–176.

    CAS  PubMed  Google Scholar 

  57. Buler, M., Aatsinki, S. M., Izzi, V., Uusimaa, J., & Hakkola, J. (2014). SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism. The FASEB Journal, 28, 3225–3237.

    CAS  PubMed  Google Scholar 

  58. X, Z., M, C., X, Z., J, Y., H, D., L, Y. and MT, M. . (2014). Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell death & disease, 5, e1576.

    Google Scholar 

  59. Lang, A., Anand, R., Altinoluk-Hambuchen, S., Ezzahoini, H., Stefanski, A., & Iram, A., et al. (2018). SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging (Albany NY), 10, 2536c.

    Google Scholar 

  60. Wenningmann, N., Knapp, M., Ande, A., Vaidya, T. R., & Ait-Oudhia, S. (2019). Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Molecular Pharmacology, 96, 219–232.

    CAS  PubMed  Google Scholar 

  61. Sokpolove, P. M. (1994). Interaction of adriamycin aglycones with mitochondria may mediate adriamycin cardiotoxicity. Int J Biochen, 26, 1341–1350.

    Google Scholar 

  62. Kostler, H., Landschutz, W., Koeppe, S., Seyfarth, T., Lipke, C., & Sandstede, J., et al. (2006). Age and gender dependence of human cardiac phosphorus metabolites determined by SLOOP 31P MR spectroscopy. Magnetic Resonance in Medicine, 56, 907–911.

    PubMed  Google Scholar 

  63. Beer, M., Seyfarth, T., Sandstede, J., Landschütz, W., Lipke, C., & Köstler, H., et al. (2002). Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. Journal of the American College of Cardiology, 40, 1267–1274.

    CAS  PubMed  Google Scholar 

  64. Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., & Naga Prasad, S. V., et al. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest, 124, 617–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Eidenschink, A. B., G, S., Muller-Weihrich, S., & Stern, H. (2000). Myocardial high-energy phosphate metabolism is altered after treatment with anthracycline in childhood. Cardiology Young, 10, 610–617.

    CAS  Google Scholar 

  66. Kerstin, N. T., & Tyler, J. D. (2020). The Role of AMPK Activation for Cardioprotection in Doxorubicin-Induced Cardiotoxicity. Cardiovascular Drugs and Therapy. https://doi.org/10.1007/s10557-020-06941-x.

    Article  Google Scholar 

  67. Cimen, H., Han, M. J., Yang, Y., Tong, Q., Koc, H., & Koc, E. C. (2010). Regulation of Succinate Dehydrogenase Activity by SIRT3 in Mammalian Mitochondria. Biochemistry, 49, 304–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Linh Ho, A.S.T., Kushal Kr Banerjee, Suji George, Wei Lin, Shaunak Deota, Asish K. Saha, Ken Nakamura, Philipp Gut, Eric Verdin, and Ullas Kolthur‐Seetharam. (2013). SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK. AGING doi: https://doi.org/10.18632/aging.100616

  69. Guangwei Zeng, H. L., & Wang, H. (2018). Amelioration of myocardial ischemia-reperfusion injury by SIRT4 involves mitochondrial protection and reduced apoptosis. Biochemical and Biophysical Research Communications, 502, 15–21.

    PubMed  Google Scholar 

  70. Yang, W., Nagasawa, K., Munch, C., Xu, Y., Satterstrom, K., & Jeong, S., et al. (2016). Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization. Cell, 167(985–1000), e1021.

    Google Scholar 

  71. Zhang, T. L., Shen, J., Tong, S., Ma, Q., Lin, X., & L. . (2020). SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death and Differentiation, 27, 329–344.

    CAS  PubMed  Google Scholar 

  72. Jenelle Govender, B. L., Marais, E., & Engelbrecht, A.-M. (2014). Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. Journal of pineal research, 57, 367–380.

    PubMed  Google Scholar 

  73. Shigetoshi Wakasugi, A. J. F., Babich, J. W., Callahan, R. J., Elmaleh, D. R., Wilkinson, R., & Wffliam Strauss, H. (1993). Myocardial Substrate Utilization and Left Ventricular Function in Adriamycin Cardiomyopathy. Journal of Nuclear Medicine, 34, 1529–1535.

    Google Scholar 

  74. Alessandra Bordoni, P.B., Silvana Hrelia. (1999). The impairment of essential fatty acid metabolism as a key factor in doxorubicin-induced damage in cultured rat cardiomyocytes. Biochimica et Biophysica Acta 1440:100–106.

  75. Natasha Iliskovic, T. L., Khaper, N., Palace, V., & Singal, P. K. (1998). Modulation of adriamycin-induced changes in serum free fatty acids, albumin and cardiac oxidative stress. Molecular and Cellular Biochemistry, 188, 161–166.

    Google Scholar 

  76. Arunachalam, S., Tirupathi Pichiah, P. B., & Achiraman, S. (2013). Doxorubicin treatment inhibits PPARgamma and may induce lipotoxicity by mimicking a type 2 diabetes-like condition in rodent models. FEBS Letters, 587, 105–110.

    CAS  PubMed  Google Scholar 

  77. Ghosh, G., De, K., Maity, S., Bandyopadhyay, D., Bhattacharya, S., Reiter, R. J., & Bandyopadhyay, A. (2007). Melatonin protects against oxidative damage and restores expression of GLUT4 gene in the hyperthyroid rat heart. Journal of Pineal Research, 42, 71–82.

    CAS  PubMed  Google Scholar 

  78. Lai, Y. C., Tabima, D. M., Dube, J. J., Hughan, K. S., Vanderpool, R. R., & Goncharov, D. A., et al. (2016). SIRT3-AMP-Activated Protein Kinase Activation by Nitrite and Metformin Improves Hyperglycemia and Normalizes Pulmonary Hypertension Associated With Heart Failure With Preserved Ejection Fraction. Circulation, 133, 717–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pillai, V. B., Sundaresan, N. R., Kim, G., Gupta, M., Rajamohan, S. B., & Pillai, J. B., et al. (2010). Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. Journal of Biological Chemistry, 285, 3133–3144.

    CAS  Google Scholar 

  80. Fan, G.-C., Zeng, H., Li, L., & Chen, J.-X. (2014). Loss of Sirt3 Limits Bone Marrow Cell-Mediated Angiogenesis and Cardiac Repair in Post-Myocardial Infarction. PLoS ONE, 9, e107011.

    Google Scholar 

  81. Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol, 29, 101394.

    CAS  PubMed  Google Scholar 

  82. Doroshow, J. H. (1983). Anthracycline Antibiotic-stimulated Superoxide, Hydrogen Peroxide, and Hydroxyl Radical Production by NADH Dehydrogenase1. Cancer Research, 43, 4543–4551.

    CAS  PubMed  Google Scholar 

  83. Kaiserova, H., Simunek, T., Sterba, M., den Hartog, G. J., Schroterova, L., & Popelova, O., et al. (2007). New iron chelators in anthracycline-induced cardiotoxicity. Cardiovascular Toxicology, 7, 145–150.

    CAS  PubMed  Google Scholar 

  84. Timao Li, I. D., & Singal, P. K. (2002). Early changes in myocardial antioxidant enzymes in rats treated with adriamycin. Molecular and Cellular Biochemistry, 2(232), 19–26.

    Google Scholar 

  85. Wallace, K. B. (2003). Doxorubicin-Induced Cardiac Mitochondrionopathy. Pharmacology & Toxicology, 93, 105–115.

    CAS  Google Scholar 

  86. Koleini, N., Nickel, B. E., Edel, A. L., Fandrich, R. R., Ravandi, A., & Kardami, E. (2019). Oxidized phospholipids in Doxorubicin-induced cardiotoxicity. Chemico-Biological Interactions, 303, 35–39.

    CAS  PubMed  Google Scholar 

  87. Aust, C. T. S. (1986). Release of Iron from Ferritin by Cardiotoxic Anthracycline Antibiotics. Archives Biochemistry Biophysics, 248, 68–689.

    Google Scholar 

  88. Giorgio Minottl, G. C., & MontI, E. (1999). Role of iron in anthracycline cardiotoxicity: new tunes for an old song? The FASEB Journal, 13, 199–212.

    Google Scholar 

  89. Castillo, E. C. M., & J. A., Chapoy-Villanueva, H., Silva-Platas, C., Trevino-Saldana, N. Guerrero-Beltran, C. E. Bernal-Ramirez, J. Torres-Quintanilla, A. Garcia, N. Youker, K. Torre-Amione, G. & Garcia-Rivas, G. . (2019). Mitochondrial Hyperacetylation in the Failing Hearts of Obese Patients Mediated Partly by a Reduction in SIRT3: The Involvement of the Mitochondrial Permeability Transition Pore. Cellular Physiology and Biochemistry, 53, 465–479.

    CAS  PubMed  Google Scholar 

  90. J, G., B, L., E, M. and AM, E. . (2014). Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. Journal of pineal research, 57, 367–380.

    Google Scholar 

  91. Cheung, K. G., & Q.T., Laura K. Cole‡, Bo Xiang, Keyun Chen, & Vernon W. Dolinsky. . (2015). Sirtuin-3 (SIRT3) Protein Attenuates Doxorubicin-induced Oxidative Stress and Improves Mitochondrial Respiration in H9c2 Cardiomyocytes. The Journal of biological chemistry, 290, 10981–10993.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Han, D., Wang, Y., Wang, Y., Dai, X., Zhou, T., & Chen, J., et al. (2020). The Tumor-Suppressive Human Circular RNA CircITCH Sponges miR-330-5p to Ameliorate Doxorubicin-Induced Cardiotoxicity Through Upregulating SIRT6, Survivin, and SERCA2a. Circulation Research, 127, e108–e125.

    CAS  PubMed  Google Scholar 

  93. Zhang, T.L., J. Tong, Q., & Lin, L. (2020). SIRT3 Acts as a Positive Autophagy Regulator to Promote Lipid Mobilization in Adipocytes via Activating AMPK. Int J Mol Sci 21:372

  94. Na Yang, H. M., Jiang, Z., Niu, L., Zhang, X., Liu, Y., & Wang, Y., et al. (2019). Dosing depending on SIRT3 activity attenuates doxorubicin-induced cardiotoxicity via elevated tolerance against mitochondrial dysfunction and oxidative stress. Biochemical and Biophysical Research Communications, 517, 111–117.

    PubMed  Google Scholar 

  95. Dhingra, R., Guberman, M., Rabinovich-Nikitin, I., Gerstein, J., Margulets, V., & Gang, H., et al. (2019). Impaired NF-kappaB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy. Cardiovascular Research. https://doi.org/10.1093/cvr/cvz240.

    Article  PubMed  Google Scholar 

  96. G, M., C, G., M, B., S, P., R, P., MR, W., G, C. and P, P. . (2015). Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. Journal of molecular and cellular cardiology, 78, 142–153.

    Google Scholar 

  97. Castillo, E. C., & M.J., Chapoy-Villanueva H, Silva-Platas C, Treviño-Saldaña N, Guerrero-Beltrán CE, Bernal-Ramírez J, Torres-Quintanilla A, García N, Youker K, Torre-Amione G, & García-Rivas G. . (2019). Mitochondrial Hyperacetylation in the Failing Hearts of Obese Patients Mediated Partly by a Reduction in SIRT3: The Involvement of the Mitochondrial Permeability Transition Pore. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 53, 465–479.

    CAS  Google Scholar 

  98. Verma, M., Shulga, N., & Pastorino, J. G. (2013). Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore. Biochimica et Biophysica Acta, 1827, 38–49.

    CAS  PubMed  Google Scholar 

  99. Zheng, Y., Shi, B., Ma, M., Wu, X., & Lin, X. (2019). The novel relationship between Sirt3 and autophagy in myocardial ischemia-reperfusion. Journal of Cellular Physiology, 234, 5488–5495.

    CAS  PubMed  Google Scholar 

  100. Li, J., Wang, P. Y., Long, N. A., Zhuang, J., Springer, D. A., & Zou, J., et al. (2019). p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc Natl Acad Sci U S A, 116, 19626–19634.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, J., Kim, Y., Liu, T., Hwang, Y.J., Hyeon, S.J., Im, H., Lee, K., Alvarez, V.E., McKee, A.C., Um, S.J., Hur, M., Mook-Jung, I., Kowall, N.W. and Ryu, H. (2018). SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease. Aging Cell 17:12679

  102. Wei Li, Y. Y., Li, Y., Zhao, Y., & Jiang, H. (2019). Sirt5 Attenuates Cisplatin-Induced Acute Kidney Injury through Regulation of Nrf2/HO-1 and Bcl-2. BioMed Research International, 2019, 4745132.

    PubMed  Google Scholar 

  103. M, G., A, H., O, J. and H, M. . (2013). Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: a mitochondrial division/mitophagy inhibitor. PLoS ONE, 8, e77713.

    Google Scholar 

  104. Scher, M. B., Vaquero, A., & Reinberg, D. (2007). SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes & Development, 21, 920–928.

    CAS  Google Scholar 

  105. Xiao, B., Hong, L., Cai, X., Mei, S., Zhang, P., & Shao, L. (2019). The true colors of autophagy in doxorubicin‑induced cardiotoxicity (Review). Oncology Letters. Doi: https://doi.org/10.3892/o1.2019.10576

  106. Li, M., Russo, M., Pirozzi, F., Tocchetti, C. G., & Ghigo, A. (2020). Autophagy and cancer therapy cardiotoxicity: From molecular mechanisms to therapeutic opportunities. Biochim Biophys Acta Mol Cell Res, 1867, 118493.

    CAS  PubMed  Google Scholar 

  107. Sciarretta, S., Maejima, Y., Zablocki, D., & Sadoshima, J. (2018). The Role of Autophagy in the Heart. Annual Review of Physiology, 80, 1–26.

    CAS  PubMed  Google Scholar 

  108. Kawaguchi, T., Takemura, G., Kanamori, H., Takeyama, T., Watanabe, T., & Morishita, K., et al. (2012). Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovascular Research, 96, 456–465.

    CAS  PubMed  Google Scholar 

  109. Sishi, B. J., Loos, B., van Rooyen, J., & Engelbrecht, A. M. (2013). Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochemical Pharmacology, 85, 124–134.

    CAS  PubMed  Google Scholar 

  110. Dutta, D., Xu, J., Dirain, M. L. S., & Leeuwenburgh, C. (2014). Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity. Free Radical Biology and Medicine, 74, 252–262.

    CAS  PubMed  Google Scholar 

  111. Lu, L., Wu, W., Yan, J., Li, X., Yu, H., & Yu, X. (2009). Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. International Journal of Cardiology, 134, 82–90.

    PubMed  Google Scholar 

  112. Lee, I. H. (2019). Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Experimental & Molecular Medicine, 51, 1–11.

    Google Scholar 

  113. Liu, G. Y., & Sabatini, D. M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews Molecular Cell Biology, 21, 183–203.

    CAS  PubMed  Google Scholar 

  114. Yang, Y., Li, Na., Chen, T., Zhang, C. L., Jingyuan, L., & L., Qi, Y., Zheng, X., Zhang, C. and Bu, P. . (2019). Sirt3 promotes sensitivity to sunitinib-induced cardiotoxicity via inhibition of GTSP1/JNK/autophagy pathway in vivo and in vitro. Archives of Toxicology, 93, 3249–3260.

    CAS  PubMed  Google Scholar 

  115. Zheng, D., Zhang, Y., Zheng, M., Cao, T., Wang, G., & Zhang, L., et al. (2019). Nicotinamide riboside promotes autolysosome clearance in preventing doxorubicin-induced cardiotoxicity. Clin Sci (Lond), 133, 1505–1521.

    CAS  Google Scholar 

  116. Coelho, A. R., Martins, T. R., Couto, R., Deus, C., Pereira, C. V., & Simoes, R. F., et al. (2017). Berberine-induced cardioprotection and Sirt3 modulation in doxorubicin-treated H9c2 cardiomyoblasts. Biochim Biophys Acta Mol Basis Dis, 1863, 2904–2923.

    CAS  PubMed  Google Scholar 

  117. Hosseini, S. (2017). Reversal of Doxorubicin-induced Cardiotoxicity by Using Phytotherapy: A Review. Journal of pharmacopuncture, 20, 243–256.

    PubMed  PubMed Central  Google Scholar 

  118. Pillai, V. B., & A.K., Yong Hu Fang, Willard W. Sharp, Sadhana Samant, Jack Arbiser, & Mahesh P. Gupta. . (2017). Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 21, 34082–34098.

    Google Scholar 

  119. Parodi-Rullan, R. M., Chapa-Dubocq, X. R., & Javadov, S. (2018). Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3. Front Physiol, 9, 1094.

    PubMed  PubMed Central  Google Scholar 

  120. Lou, Y., Wang, Z., Xu, Y., Zhou, P., Cao, J., & Li, Y., et al. (2015). Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. International Journal of Molecular Medicine, 36, 873–880.

    CAS  PubMed  Google Scholar 

  121. Zhang, C., Feng, Y., Qu, S., Wei, X., Zhu, H., & Luo, Q., et al. (2011). Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovascular Research, 90, 538–545.

    CAS  PubMed  Google Scholar 

  122. Ortiz, K. V., Pérez-Vázquez, V., & Macías-Cervantes, M. H. (2019). Exercise and Sirtuins: A Way to Mitochondrial Health in Skeletal Muscle. International Journal of Molecular Sciences, 20, 2717.

    Google Scholar 

  123. Marques Aleixo, I.S.-A., Mariani, E., & D., Rizo-Roca, D., Padrao, A.I., Rocha-Rodrigues, S., Viscor, G., Torrella, J.R., Ferreira, R., Oliveira, P.J., Magalhaes, J. and Ascensao, A. . (2015). Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion, 20, 22–33.

    CAS  PubMed  Google Scholar 

  124. JG, W., B, S., PC, W., DA, H., L, B., M, G., M, L., E, V. and SL, H. . (2018). Drosophila melanogasterSirt4 is a mitochondrial regulator of metabolism and lifespan in. Proceedings of the National Academy of Sciences of the United States of America, 115, 1564–1569.

    Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81760065 to J. Li) and the Jiangxi Natural Science Foundation (20151BB-G70166 to J. Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juxiang Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Rajiv Janardhanan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Liu, F. & Li, J. Mitochondrial Sirtuins and Doxorubicin-induced Cardiotoxicity. Cardiovasc Toxicol 21, 179–191 (2021). https://doi.org/10.1007/s12012-020-09626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09626-x

Keywords

Navigation