Skip to main content
Log in

Role of Peroxiredoxins in Protecting Against Cardiovascular and Related Disorders

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Peroxiredoxin (Prx) refers to a family of thiol-dependent peroxidases that decompose hydrogen peroxide, lipid hydroperoxides, as well as peroxynitrite, and protect against oxidative and inflammatory stress. There are six mammalian Prx isozymes (Prx1–6), classified as typical 2-Cys, atypical 2-Cys, or 1-Cys Prxs based on the mechanism and the number of cysteine residues involved during catalysis. In addition to their well-established peroxide-scavenging activity, some Prxs also participate in the regulation of various cell signaling pathways. Extensive animal studies employing primarily gene knockout models provide substantial evidence supporting a critical protective role of Prxs in various disease processes involving oxidative and inflammatory stress. This review surveys recent research findings, published primarily in influential journals, on the involvement of various Prx isozymes in protecting against cardiovascular injury and related disorders, including diabetes, metabolic syndromes, and sepsis, whose pathophysiology all intimately involves oxidative stress and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ApoE:

Apolipoprotein E

LPS:

Lipopolysaccharide

PDGF:

Platelet-derived growth factor

Prx:

Peroxiredoxin

Trx:

Thioredoxin

References

  1. Kim, K., Kim, I. H., Lee, K. Y., Rhee, S. G., & Stadtman, E. R. (1988). The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. Journal of Biological Chemistry, 263(10), 4704–4711.

    CAS  PubMed  Google Scholar 

  2. Salzano, S., Checconi, P., Hanschmann, E. M., Lillig, C. H., Bowler, L. D., Chan, P., et al. (2014). Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12157–12162. https://doi.org/10.1073/pnas.1401712111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bryk, R., Griffin, P., & Nathan, C. (2000). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature, 407(6801), 211–215. https://doi.org/10.1038/35025109.

    Article  CAS  PubMed  Google Scholar 

  4. Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., & Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Archives of Biochemistry and Biophysics, 484(2), 146–154. https://doi.org/10.1016/j.abb.2008.11.017.

    Article  CAS  PubMed  Google Scholar 

  5. De Armas, M. I., Esteves, R., Viera, N., Reyes, A. M., Mastrogiovanni, M., Alegria, T. G. P., et al. (2019). Rapid peroxynitrite reduction by human peroxiredoxin 3: Implications for the fate of oxidants in mitochondria. Free Radical Biology and Medicine, 130, 369–378. https://doi.org/10.1016/j.freeradbiomed.2018.10.451.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J. W., Dodia, C., Feinstein, S. I., Jain, M. K., & Fisher, A. B. (2000). 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. Journal of Biological Chemistry, 275(37), 28421–28427. https://doi.org/10.1074/jbc.M005073200.

    Article  CAS  PubMed  Google Scholar 

  7. Kisucka, J., Chauhan, A. K., Patten, I. S., Yesilaltay, A., Neumann, C., Van Etten, R. A., et al. (2008). Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circulation Research, 103(6), 598–605. https://doi.org/10.1161/CIRCRESAHA.108.174870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeong, S. J., Kim, S., Park, J. G., Jung, I. H., Lee, M. N., Jeon, S., et al. (2018). Prdx1 (peroxiredoxin 1) deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux. Autophagy, 14(1), 120–133. https://doi.org/10.1080/15548627.2017.1327942.

    Article  CAS  PubMed  Google Scholar 

  9. Stancill, J. S., Happ, J. T., Broniowska, K. A., Hogg, N., & Corbett, J. A. (2020). Peroxiredoxin 1 plays a primary role in protecting pancreatic ss-cells from hydrogen peroxide and peroxynitrite. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. https://doi.org/10.1152/ajpregu.00011.2020.

    Article  PubMed  Google Scholar 

  10. Wang, Q. M., Cai, Y., Tian, D. R., Yang, H., Wei, Z. N., Wang, F., et al. (2010). Peroxiredoxin1: A potential obesity-related factor in the hypothalamus. Medical Science Monitor, 16(10), BR321–BR326.

    CAS  PubMed  Google Scholar 

  11. Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435(7040), 347–353. https://doi.org/10.1038/nature03587.

    Article  CAS  PubMed  Google Scholar 

  12. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., & Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 270(5234), 296–299. https://doi.org/10.1126/science.270.5234.296.

    Article  CAS  PubMed  Google Scholar 

  13. He, C., Medley, S. C., Hu, T., Hinsdale, M. E., Lupu, F., Virmani, R., et al. (2015). PDGFRbeta signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nature Communications, 6, 7770. https://doi.org/10.1038/ncomms8770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, J. G., Yoo, J. Y., Jeong, S. J., Choi, J. H., Lee, M. R., Lee, M. N., et al. (2011). Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice. Circulation Research, 109(7), 739–749. https://doi.org/10.1161/CIRCRESAHA.111.245530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jang, J. Y., Wang, S. B., Min, J. H., Chae, Y. H., Baek, J. Y., Yu, D. Y., et al. (2015). Peroxiredoxin II is an antioxidant enzyme that negatively regulates collagen-stimulated platelet function. Journal of Biological Chemistry, 290(18), 11432–11442. https://doi.org/10.1074/jbc.M115.644260.

    Article  CAS  PubMed  Google Scholar 

  16. Federti, E., Matte, A., Ghigo, A., Andolfo, I., James, C., Siciliano, A., et al. (2017). Peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension. Free Radical Biology and Medicine, 112, 376–386. https://doi.org/10.1016/j.freeradbiomed.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  17. Kang, S. W., Chang, T. S., Lee, T. H., Kim, E. S., Yu, D. Y., & Rhee, S. G. (2004). Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-alpha. Journal of Biological Chemistry, 279(4), 2535–2543. https://doi.org/10.1074/jbc.M307698200.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, C. S., Lee, D. S., Song, C. H., An, S. J., Li, S., Kim, J. M., et al. (2007). Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. Journal of Experimental Medicine, 204(3), 583–594. https://doi.org/10.1084/jem.20061849.

    Article  CAS  PubMed  Google Scholar 

  19. Matsushima, S., Ide, T., Yamato, M., Matsusaka, H., Hattori, F., Ikeuchi, M., et al. (2006). Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation, 113(14), 1779–1786. https://doi.org/10.1161/CIRCULATIONAHA.105.582239.

    Article  CAS  PubMed  Google Scholar 

  20. Tsutsui, H., Kinugawa, S., & Matsushima, S. (2009). Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovascular Research, 81(3), 449–456. https://doi.org/10.1093/cvr/cvn280.

    Article  CAS  PubMed  Google Scholar 

  21. Nickel, A. G., von Hardenberg, A., Hohl, M., Loffler, J. R., Kohlhaas, M., Becker, J., et al. (2015). Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metabolism, 22(3), 472–484. https://doi.org/10.1016/j.cmet.2015.07.008.

    Article  CAS  PubMed  Google Scholar 

  22. Dey, S., DeMazumder, D., Sidor, A., Foster, D. B., & O'Rourke, B. (2018). Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circulation Research, 123(3), 356–371. https://doi.org/10.1161/CIRCRESAHA.118.312708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, L., Na, R., Gu, M., Salmon, A. B., Liu, Y., Liang, H., et al. (2008). Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell, 7(6), 866–878. https://doi.org/10.1111/j.1474-9726.2008.00432.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arkat, S., Umbarkar, P., Singh, S., & Sitasawad, S. L. (2016). Mitochondrial peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in diabetic cardiomyopathy. Free Radical Biology and Medicine, 97, 489–500. https://doi.org/10.1016/j.freeradbiomed.2016.06.019.

    Article  CAS  PubMed  Google Scholar 

  25. Huh, J. Y., Kim, Y., Jeong, J., Park, J., Kim, I., Huh, K. H., et al. (2012). Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxidants & Redox Signaling, 16(3), 229–243.

    Article  CAS  Google Scholar 

  26. Li, L., Shoji, W., Takano, H., Nishimura, N., Aoki, Y., Takahashi, R., et al. (2007). Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stress. Biochemical and Biophysical Research Communications, 355(3), 715–721. https://doi.org/10.1016/j.bbrc.2007.02.022.

    Article  CAS  PubMed  Google Scholar 

  27. Guo, X., Yamada, S., Tanimoto, A., Ding, Y., Wang, K. Y., Shimajiri, S., et al. (2012). Overexpression of peroxiredoxin 4 attenuates atherosclerosis in apolipoprotein E knockout mice. Antioxidants & Redox Signaling, 17(10), 1362–1375. https://doi.org/10.1089/ars.2012.4549.

    Article  CAS  Google Scholar 

  28. Ding, Y., Yamada, S., Wang, K. Y., Shimajiri, S., Guo, X., Tanimoto, A., et al. (2010). Overexpression of peroxiredoxin 4 protects against high-dose streptozotocin-induced diabetes by suppressing oxidative stress and cytokines in transgenic mice. Antioxidants & Redox Signaling, 13(10), 1477–1490. https://doi.org/10.1089/ars.2010.3137.

    Article  CAS  Google Scholar 

  29. Nabeshima, A., Yamada, S., Guo, X., Tanimoto, A., Wang, K. Y., Shimajiri, S., et al. (2013). Peroxiredoxin 4 protects against nonalcoholic steatohepatitis and type 2 diabetes in a nongenetic mouse model. Antioxidants & Redox Signaling, 19(17), 1983–1998. https://doi.org/10.1089/ars.2012.4946.

    Article  CAS  Google Scholar 

  30. Mehmeti, I., Lortz, S., Elsner, M., & Lenzen, S. (2014). Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells. Journal of Biological Chemistry, 289(39), 26904–26913. https://doi.org/10.1074/jbc.M114.568329.

    Article  CAS  PubMed  Google Scholar 

  31. Lipinski, S., Pfeuffer, S., Arnold, P., Treitz, C., Aden, K., Ebsen, H., et al. (2019). Prdx4 limits caspase-1 activation and restricts inflammasome-mediated signaling by extracellular vesicles. EMBO Journal, 38(20), e101266. https://doi.org/10.15252/embj.2018101266.

    Article  CAS  PubMed  Google Scholar 

  32. Graham, D. B., Jasso, G. J., Mok, A., Goel, G., Ng, A. C. Y., Kolde, R., et al. (2018). Nitric oxide engages an anti-inflammatory feedback loop mediated by peroxiredoxin 5 in phagocytes. Cell Reports, 24(4), 838–850. https://doi.org/10.1016/j.celrep.2018.06.081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, M. H., Lee, H. J., Lee, S. R., Lee, H. S., Huh, J. W., Bae, Y. C., et al. (2019). Peroxiredoxin 5 inhibits glutamate-induced neuronal cell death through the regulation of calcineurin-dependent mitochondrial dynamics in HT22 Cells. Molecular and Cellular Biology. https://doi.org/10.1128/MCB.00148-19.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim, M. H., Park, S. J., Kim, J. H., Seong, J. B., Kim, K. M., Woo, H. A., et al. (2018). Peroxiredoxin 5 regulates adipogenesis-attenuating oxidative stress in obese mouse models induced by a high-fat diet. Free Radical Biology and Medicine, 123, 27–38. https://doi.org/10.1016/j.freeradbiomed.2018.05.061.

    Article  CAS  PubMed  Google Scholar 

  35. Kim, M. H., Seong, J. B., Huh, J. W., Bae, Y. C., Lee, H. S., & Lee, D. S. (2019). Peroxiredoxin 5 ameliorates obesity-induced non-alcoholic fatty liver disease through the regulation of oxidative stress and AMP-activated protein kinase signaling. Redox Biology, 28, 101315. https://doi.org/10.1016/j.redox.2019.101315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, X., Phelan, S. A., Petros, C., Taylor, E. F., Ledinski, G., Jurgens, G., et al. (2004). Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: Significance of genetic background for assessing atherosclerosis. Atherosclerosis, 177(1), 61–70. https://doi.org/10.1016/j.atherosclerosis.2004.06.007.

    Article  CAS  PubMed  Google Scholar 

  37. Phelan, S. A., Wang, X., Wallbrandt, P., Forsman-Semb, K., & Paigen, B. (2003). Overexpression of Prdx6 reduces H2O2 but does not prevent diet-induced atherosclerosis in the aortic root. Free Radical Biology and Medicine, 35(9), 1110–1120.

    Article  CAS  PubMed  Google Scholar 

  38. Pacifici, F., Arriga, R., Sorice, G. P., Capuani, B., Scioli, M. G., Pastore, D., et al. (2014). Peroxiredoxin 6, a novel player in the pathogenesis of diabetes. Diabetes, 63(10), 3210–3220. https://doi.org/10.2337/db14-0144.

    Article  CAS  PubMed  Google Scholar 

  39. Fisher, A. B. (2017). Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Archives of Biochemistry and Biophysics, 617, 68–83. https://doi.org/10.1016/j.abb.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  40. Manevich, Y., Sweitzer, T., Pak, J. H., Feinstein, S. I., Muzykantov, V., & Fisher, A. B. (2002). 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11599–11604. https://doi.org/10.1073/pnas.182384499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuda, O., Brezinova, M., Silhavy, J., Landa, V., Zidek, V., Dodia, C., et al. (2018). Nrf2-mediated antioxidant defense and peroxiredoxin 6 are linked to biosynthesis of palmitic acid ester of 9-hydroxystearic acid. Diabetes, 67(6), 1190–1199. https://doi.org/10.2337/db17-1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yore, M. M., Syed, I., Moraes-Vieira, P. M., Zhang, T., Herman, M. A., Homan, E. A., et al. (2014). Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell, 159(2), 318–332. https://doi.org/10.1016/j.cell.2014.09.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Syed, I., Lee, J., Moraes-Vieira, P. M., Donaldson, C. J., Sontheimer, A., Aryal, P., et al. (2018). Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metabolism, 27(2), 419–27 e4. https://doi.org/10.1016/j.cmet.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chatterjee, S., Feinstein, S. I., Dodia, C., Sorokina, E., Lien, Y. C., Nguyen, S., et al. (2011). Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. Journal of Biological Chemistry, 286(13), 11696–11706. https://doi.org/10.1074/jbc.M110.206623.

    Article  CAS  PubMed  Google Scholar 

  45. Vazquez-Medina, J. P., Dodia, C., Weng, L., Mesaros, C., Blair, I. A., Feinstein, S. I., et al. (2016). The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. FASEB Journal, 30(8), 2885–2898. https://doi.org/10.1096/fj.201500146R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vazquez-Medina, J. P., Tao, J. Q., Patel, P., Bannitz-Fernandes, R., Dodia, C., Sorokina, E. M., et al. (2019). Genetic inactivation of the phospholipase A2 activity of peroxiredoxin 6 in mice protects against LPS-induced acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology, 316(4), L656–L668. https://doi.org/10.1152/ajplung.00344.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hiroi, M., Nagahara, Y., Miyauchi, R., Misaki, Y., Goda, T., Kasezawa, N., et al. (2011). The combination of genetic variations in the PRDX3 gene and dietary fat intake contribute to obesity risk. Obesity (Silver Spring), 19(4), 882–887. https://doi.org/10.1038/oby.2010.275.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the submission of the manuscript to Cardiovascular Toxicology.

Corresponding author

Correspondence to Y. Robert Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

Writing and submission of this manuscript is in full compliance with pertinent ethical standards of scholarly publishing, including authorship and proper citation of references.

Additional information

Handling Editor: Kurt J. Varner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.R., Zhu, H. & Danelisen, I. Role of Peroxiredoxins in Protecting Against Cardiovascular and Related Disorders. Cardiovasc Toxicol 20, 448–453 (2020). https://doi.org/10.1007/s12012-020-09588-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09588-0

Keywords

Navigation