Skip to main content
Log in

Oleic Acid Prevents Isoprenaline-Induced Cardiac Injury: Effects on Cellular Oxidative Stress, Inflammation and Histopathological Alterations

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The present study was designed to assess the cardio-protective role of oleic acid in myocardial injury (MI) induced by intra-peritoneal injection of isoprenaline (ISO) in rats for 2 consecutive days. Oleic acid (OA) was administered orally (@ 5 mg/kg b.wt and 10 mg/kg b.wt) for 21 days before inducing MI. Pre-exposure to OA at higher dose significantly improved the HW/BW ratio, myocardial infarct size, lipid profiles (total cholesterol, HDL-C) and cardiac injury biomarkers (LDH, CK-MB, cardiac troponin-I, MMP-9), thus suggesting its cardio-protective role. The ameliorative potential of the higher dose of OA was further substantiated by its ability to reduce the cardiac oxidative stress as evidenced by significant decrease in lipid peroxidation coupled with increase in superoxide dismutase activity and reduced glutathione level. Significant decrease in heart rate as well as increase in RR and QT intervals in oleic acid pre-exposed rats were also observed. OA pre-treatment also reduced the histopathological alterations seen in myocardial injury group rats. The mRNA expression of cardiac UCP-2 gene, a regulator of reactive oxygen species (ROS) generation, was significantly increased in oleic acid pre-exposure group compared to the ISO-induced myocardial injury group. Thus increase in expression of UCP-2 gene in cardiac tissue seems to be one of the protective measures against myocardial injury. Based on the above findings, it may be inferred that oleic acid possesses promising cardio-protective potential against myocardial injury due to its anti-oxidative property and ability to modulate cardiac metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Suchal, K., Malik, S., Gamad, N., Malhotra, R. K., Goyal, S. N., Chaudhary, U., … & Arya, D. S. (2016). Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2016/7580731.

    Article  CAS  Google Scholar 

  2. Reeve, J. L. V., Duffy, A. M., & Brein, O. (2005). Don’t loss heart to therapeutic values of apoptosis prevention of cardiovascular diseases. Journal of Cellular and Molecular Medicine,9, 609–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaur, K., Sharma, A. K., & Singal, P. K. (2006). Significance of changes in TNF-alpha and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology,291(1), H106–H113.

    Article  CAS  PubMed  Google Scholar 

  4. Bayeva, M., Gheorghiade, M., & Ardehali, H. (2013). Mitochondria as a therapeutic target in heart failure. Journal of the American College of Cardiology,61(6), 599–610.

    Article  CAS  PubMed  Google Scholar 

  5. Hearse, D. J. (1991). Prospects for antioxidant therapy in cardiovascular medicine. The American Journal of Medicine,91(3), S118–S121.

    Article  Google Scholar 

  6. Gauthaman, K., Banerjee, S. K., Dinda, A. K., Ghosh, C. C., & Maulik, S. K. (2005). Terminalia arjuna (Roxb.) protects rabbit heart against ischemic-reperfusion injury: Role of antioxidant enzymes and heat shock protein. Journal of Ethnopharmacology,96(3), 403–409.

    Article  CAS  PubMed  Google Scholar 

  7. Bloom, S., & Cancilla, P. A. (1969). Myocytolysis and mitochondrial calcification in rat myocardium after low doses of isoproterenol. The American Journal of Pathology,54(3), 373.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Othman, A. I., Elkomy, M. M., El-Missiry, M. A., & Dardor, M. (2017). Epigallocatechin-3-gallate prevents cardiac apoptosis by modulating the intrinsic apoptotic pathway in isoproterenol-induced myocardial infarction. European Journal of Pharmacology,794, 27–36.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. Scientific World Journal. https://doi.org/10.1155/2013/162750.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salvamani, S., Gunasekaran, B., Shaharuddin, N. A., Ahmad, S. A., & Shukor, M. Y. (2014). Antiartherosclerotic effects of plant flavonoids. BioMed Research International. https://doi.org/10.1155/2014/480258.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hollenberg, N. K. (2005). The role of β-blockers as a cornerstone of cardiovascular therapy. American Journal of Hypertension,18(S6), 165S–168S.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y. T., Zhou, C., Jia, H. M., Chang, X., & Zou, Z. M. (2016). Standardized Chinese Formula Xin-Ke-Shu inhibits the myocardium Ca2+ overloading and metabolic alternations in isoproterenol-induced myocardial infarction rats. Scientific Reports,6, 30208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ojha, S. K., Nandave, M., Arora, S., Narang, R., Dinda, A. K., & Arya, D. S. (2008). Chronic administration of Tribulus terrestris Linn extract improves cardiac function and attenuates myocardial infarction in rats. International Journal of Pharmacology,4(1), 1–10.

    Article  Google Scholar 

  14. Hertog, M. G., Feskens, E. J., Kromhout, D., Hollman, P. C. H., & Katan, M. B. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. The Lancet,342(8878), 1007–1011.

    Article  CAS  Google Scholar 

  15. Fitó, M., de la Torre, R., & Covas, M. I. (2007). Olive oil and oxidative stress. Molecular Nutrition & Food Research,51(10), 1215–1224.

    Google Scholar 

  16. Bermudez, B., Lopez, S., Ortega, A., Varela, M. L., Pacheco, M. Y., Abia, R., et al. (2011). Oleic acid in olive oil: From a metabolic framework toward a clinical perspective. Current Pharmaceutical Design,17(8), 831.

    Article  CAS  PubMed  Google Scholar 

  17. Carrillo Pérez, C., Cavia Camarero, M. D. M., & Alonso de la Torre, S. (2012). Role of oleic acid in immune system; mechanism of action; a review. Nutrición Hospitalaria, 27(4)(julio-agosto), 978–990.

  18. Brugè, F., Bacchetti, T., Principi, F., Scarpa, E. S., Littarru, G. P., & Tiano, L. (2012). Olive oil supplemented with Coenzyme Q10: Effect on plasma and lipoprotein oxidative status. BioFactors,38(3), 249–256.

    Article  PubMed  CAS  Google Scholar 

  19. Huertas, J. R., Martinez-Velasco, E., Ibáñez, S., López-Frias, M., Ochoa, J. J., Quiles, J., et al. (1999). Virgin olive oil and coenzyme Q10 protect heart mitochondria from peroxidative damage during aging. BioFactors,9(2–4), 337–343.

    Article  CAS  PubMed  Google Scholar 

  20. De Lorgeril, M., & Salen, P. (2006). The Mediterranean-style diet for the prevention of cardiovascular diseases. Public Health Nutrition,9(1a), 118–123.

    Article  PubMed  Google Scholar 

  21. Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M. I., Corella, D., Arós, F., … & Lamuela-Raventos, R. M. (2013). Primary prevention of cardiovascular disease with a Mediterranean diet. New England Journal of Medicine, 368(14), 1279–1290.

  22. Cooper, R., Cutler, J., Desvigne-Nickens, P., Fortmann, S. P., Friedman, L., Havlik, R., et al. (2000). Trends and disparities in coronary heart disease, stroke, and other cardiovascular diseases in the United States: Findings of the national conference on cardiovascular disease prevention. Circulation,102(25), 3137–3147.

    Article  CAS  PubMed  Google Scholar 

  23. Massaro, M., & De, R. C. (2002). Vasculoprotective effects of oleic acid: Epidemiological background and direct vascular antiatherogenic properties. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD,12(1), 42–51.

    CAS  PubMed  Google Scholar 

  24. Gonçalves-de-Albuquerque, C. F., Medeiros-de-Moraes, I. M., de Jesus Oliveira, F. M., Burth, P., Bozza, P. T., Faria, M. V. C., et al. (2016). Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLoS ONE,11(4), e0153607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Terés, S., Barceló-Coblijn, G., Benet, M., Alvarez, R., Bressani, R., Halver, J. E., et al. (2008). Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proceedings of the National Academy of Sciences,105(37), 13811–13816.

    Article  Google Scholar 

  26. Madesh, M., & Balasubramanian, K. A. (1998). Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian Journal of Biochemistry & Biophysics,35(3), 184–188.

    CAS  Google Scholar 

  27. Aebi, M. (1983). Catalase. In H. U. Bergmeyer, J. Bergmeyer, & M. Grabi (Eds.), Methods of enzymatic analysis (pp. 273–286). Weinheim: Verlag Chemie.

    Google Scholar 

  28. Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry,25, 192–205.

    Article  CAS  PubMed  Google Scholar 

  29. Rehman, S. U. (1984). Lead induced regional lipid peroxidation in brain. Toxicology Letters,21, 333–337.

    Article  Google Scholar 

  30. Lengacher, S., Magistretti, P. J., & Pellerin, L. (2004). Quantitative rt-PCR analysis of uncoupling protein isoforms in mouse brain cortex: Methodological optimization and comparison of expression with brown adipose tissue and skeletal muscle. Journal of Cerebral Blood Flow and Metabolism,24(7), 780–788.

    Article  CAS  PubMed  Google Scholar 

  31. Singh, P., Sharma, P., Nakade, U. P., Sharma, A., Gari, M., Choudhury, S., … & Garg, S. K. (2018). Endocannabinoid-mediated modulation of Gq protein-coupled receptor mediates vascular hyporeactivity to nor-adrenaline during polymicrobial sepsis. Pharmacological Reports, 70(6), 1150–1157.

  32. Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology. New York: McGraw-Hill.

    Google Scholar 

  33. Puchtler, H., Waldrop, F. S., & Valentine, L. S. (1973). Polarization microscopic studies of connective tissue stained with picro-sirius red FBA. Beiträge zur Pathologie,150(2), 174–187.

    Article  CAS  PubMed  Google Scholar 

  34. Junqueira, L. C. U., Bignolas, G., & Brentani, R. R. (1979). Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. The Histochemical Journal,11(4), 447–455.

    Article  CAS  PubMed  Google Scholar 

  35. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔct Method. Methods,25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  36. Li, H., Xie, Y. H., Yang, Q., Wang, S. W., Zhang, B. L., Wang, J. B., … & Hu, J. (2012). Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS ONE, 7(11), e48872.

  37. Borghi, C., Bacchelli, S., Degli Esposti, D., & Ambrosioni, E. (2006). Effects of early angiotensin-converting enzyme inhibition in patients with non-ST-elevation acute anterior myocardial infarction. American Heart Journal,152(3), 470–477.

    Article  CAS  PubMed  Google Scholar 

  38. Mnafgui, K., Hajji, R., Derbali, F., Khlif, I., Kraiem, F., Ellefi, H., … & Gharsallah, N. (2016). Protective effect of hydroxytyrosol against cardiac remodeling after isoproterenol-induced myocardial infarction in rat. Cardiovascular Toxicology, 16(2), 147–155.

  39. Kumaran, K. S., & Prince, P. S. M. (2010). Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage. Cell Stress and Chaperones,15(6), 791–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Caterina, R., Liao, J. K., & Libby, P. (2000). Fatty acid modulation of endothelial activation. The American Journal of Clinical Nutrition,71(1), 213S–223S.

    Article  PubMed  Google Scholar 

  41. Mesa, M. G., Aguilera, C. G., & Gil, A. H. (2006). Importance of lipids in the nutritional treatment of inflammatory diseases. Nutrición Hospitalaria,21, 28–41.

    Google Scholar 

  42. Alam, M. N., Hossain, M. M., Rahman, M. M., Subhan, N., Mamun, M. A. A., Ulla, A., et al. (2018). Astaxanthin prevented oxidative stress in heart and kidneys of Isoproterenol-administered aged rats. Journal of Dietary Supplements,15(1), 42–54.

    Article  CAS  PubMed  Google Scholar 

  43. Mishra, S., Ghosal, N., Bhattacharjee, B., Ghosh, A., Ghosh, A. K., Bezbaruah, R., et al. (2016). Oleic acid, one of the major components of ethyl acetate partitioned fraction of aqueous extract of bark of Terminalia arjuna, protects against adrenaline induced myocardial injury in male albino rats. Journal of Pharmacy Research,10(8), 543–565.

    CAS  Google Scholar 

  44. Priscilla, D. H., & Prince, P. S. M. (2009). Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions,179(2–3), 118–124.

    Article  CAS  PubMed  Google Scholar 

  45. Dufour, D. R., Lott, J. A., Nolte, F. S., Gretch, D. R., Koff, R. S., & Seeff, L. B. (2000). Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clinical Chemistry,46(12), 2027–2049.

    CAS  PubMed  Google Scholar 

  46. Lofthus, D. M., Stevens, S. R., Armstrong, P. W., Granger, C. B., & Mahaffey, K. W. (2012). Pattern of liver enzyme elevations in acute ST-elevation myocardial infarction. Coronary Artery Disease,23(1), 22–30.

    Article  PubMed  Google Scholar 

  47. Mythili, S., & Malathi, N. (2015). Diagnostic markers of acute myocardial infarction. Biomedical Reports,3(6), 743–748.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Periasamy, S., Mo, F. E., Chen, S. Y., Chang, C. C., & Liu, M. Y. (2011). Sesamol attenuates isoproterenol-induced acute myocardial infarction via inhibition of matrix metalloproteinase-2 and-9 expression in rats. Cellular Physiology and Biochemistry,27(3–4), 273–280.

    Article  CAS  PubMed  Google Scholar 

  49. Rajadurai, M., & Stanely Mainzen Prince, P. (2007). Preventive effect of naringin on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats: A transmission electron microscopic study. Journal of Biochemical and Molecular Toxicology,21(6), 354–361.

    Article  CAS  PubMed  Google Scholar 

  50. Panda, S., Kar, A., & Biswas, S. (2017). Preventive effect of agnucastoside C against isoproterenol-induced myocardial injury. Scientific Reports,7(1), 16146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Morimoto, C., Kiyama, A., Kameda, K., Ninomiya, H., Tsujita, T., & Okuda, H. (2000). Mechanism of the stimulatory action of okadaic acid on lipolysis in rat fat cells. Journal of Lipid Research,41(2), 199–204.

    CAS  PubMed  Google Scholar 

  52. Hemalatha, K. L., & Stanely Mainzen Prince, P. (2015). Antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on experimentally induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology,29(4), 182–188.

    Article  CAS  PubMed  Google Scholar 

  53. Baldissera, M. D., Souza, C. F., Grando, T. H., Stefani, L. M., & Monteiro, S. G. (2017). β-Caryophyllene reduces atherogenic index and coronary risk index in hypercholesterolemic rats: The involvement of cardiac oxidative damage. Chemico-Biological Interactions,270, 9–14.

    Article  CAS  PubMed  Google Scholar 

  54. Al-Shudiefat, A. A. R., Sharma, A. K., Bagchi, A. K., Dhingra, S., & Singal, P. K. (2013). Oleic acid mitigates TNF-α-induced oxidative stress in rat cardiomyocytes. Molecular and Cellular Biochemistry,372(1–2), 75–82.

    Article  CAS  PubMed  Google Scholar 

  55. De Biase, L., Pignatelli, P., Lenti, L., Tocci, G., Piccioni, F., Riondino, S., et al. (2003). Enhanced TNF alpha and oxidative stress in patients with heart failure: Effect of TNF alpha on platelet 02-production. Thrombosis and Haemostasis,90, 317–325.

    Article  PubMed  CAS  Google Scholar 

  56. Lim, J. H., Gerhart-Hines, Z., Dominy, J. E., Lee, Y., Kim, S., Tabata, M., … & Puigserver, P. (2013). Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. Journal of Biological Chemistry, 288(10), 7117–7126.

  57. Kuna, A., & Achinna, P. (2013). Mono unsaturated fatty acids for CVD and diabetes: A healthy choice. International Journal of Nutrition, Pharmacology, Neurological Diseases,3(3), 236.

    Article  CAS  Google Scholar 

  58. Wang, S., Liang, X., Yang, Q., Fu, X., Rogers, C. J., Zhu, M., et al. (2015). Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International Journal of Obesity,39(6), 967.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, Q., Alemany, R., Casas, J., Kitajka, K., Lanier, S. M., & Escriba, P. V. (2005). Influence of the membrane lipid structure on signal processing via G protein-coupled receptors. Molecular Pharmacology,68(1), 210–217.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, S. S. (1997). Generating, partitioning, targeting and functioning of superoxide in mitochondria. Bioscience Reports,17(3), 259–272.

    Article  CAS  PubMed  Google Scholar 

  61. Sack, M. N. (2006). Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovascular Research,72(2), 210–219.

    Article  CAS  PubMed  Google Scholar 

  62. Bodyak, N., Rigor, D. L., Chen, Y. S., Han, Y., Bisping, E., Pu, W. T., et al. (2007). Uncoupling protein-2 modulates cell viability in adult rat cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology,293, H829–H835.

    Article  CAS  PubMed  Google Scholar 

  63. Jaswal, J. S., Keung, W., Wang, W., Ussher, J. R., & Lopaschuk, G. D. (2011). Targeting fatty acid and carbohydrate oxidation—A novel therapeutic intervention in the ischemic and failing heart. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,1813(7), 1333–1350.

    Article  CAS  Google Scholar 

  64. Boehm, E. A., Jones, B. E., Radda, G. K., Veech, R. L., & Clarke, K. (2001). Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. American Journal of Physiology-Heart and Circulatory Physiology,280(3), H977–H983.

    Article  CAS  PubMed  Google Scholar 

  65. Murray, A. J., Anderson, R. E., Watson, G. C., Radda, G. K., & Clarke, K. (2004). Uncoupling proteins in human heart. The Lancet,364(9447), 1786–1788.

    Article  CAS  Google Scholar 

  66. Murray, A. J., Cole, M. A., Lygate, C. A., Carr, C. A., Stuckey, D. J., Little, S. E., … & Clarke, K. (2008). Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. Journal of Molecular and Cellular Cardiology, 44(4), 694–700.

  67. Xu, H. E., Lambert, M. H., Montana, V. G., Parks, D. J., Blanchard, S. G., Brown, P. J., et al. (1999). Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Molecular Cell,3(3), 397–403.

    Article  CAS  PubMed  Google Scholar 

  68. Kliewer, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., et al. (1997). Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proceedings of the National Academy of Sciences,94(9), 4318–4323.

    Article  CAS  Google Scholar 

  69. Pawar, A., & Jump, D. B. (2003). Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor α activity in rat primary hepatoctes. Journal of Biological Chemistry,278(38), 35931–35939.

    Article  CAS  Google Scholar 

  70. Yokoi, H., Mizukami, H., Nagatsu, A., Tanabe, H., & Inoue, M. (2010). Hydroxy monounsaturated fatty acids as agonists for peroxisome proliferator-activated receptors. Biological and Pharmaceutical Bulletin,33(5), 854–861.

    Article  CAS  PubMed  Google Scholar 

  71. Fillmore, N., Mori, J., & Lopaschuk, G. D. (2014). Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. British Journal of Pharmacology,171(8), 2080–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews,90(1), 207–258.

    Article  CAS  PubMed  Google Scholar 

  73. Kolwicz, S. C., Jr., Olson, D. P., Marney, L. C., Garcia-Menendez, L., Synovec, R. E., & Tian, R. (2012). Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circulation Research,111(6), 728–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tuunanen, H., Engblom, E., Naum, A., Scheinin, M., Någren, K., Airaksinen, J., … & Knuuti, J. (2006). Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: Evidence of relationship with insulin resistance and left ventricular dysfunction. Journal of Cardiac Failure, 12(8), 644–652.

  75. Berthiaume, J. M., Young, M. E., Chen, X., McElfresh, T. A., Yu, X., & Chandler, M. P. (2012). Normalizing the metabolic phenotype after myocardial infarction: Impact of subchronic high fat feeding. Journal of Molecular and Cellular Cardiology,53(1), 125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chrastina, A., Pokreisz, P., & Schnitzer, J. E. (2013). Experimental model of transthoracic, vascular-targeted photodynamically-induced myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology,306, H270–H278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Speechly-Dick, M. E., Mocanu, M. M., & Yellon, D. M. (1994). Protein kinase C. Its role in ischemic preconditioning in the rat. Circulation Research,75(3), 586–590.

    Article  CAS  PubMed  Google Scholar 

  78. Mackiewicz, U., Gerges, J. Y., Chu, S., Duda, M., Dobrzynski, H., Lewartowski, B., et al. (2014). Ivabradine protects against ventricular arrhythmias in acute myocardial infarction in the rat. Journal of Cellular Physiology,229(6), 813–823.

    Article  CAS  PubMed  Google Scholar 

  79. Thippeswamy, B. S., Thakker, S. P., Tubachi, S., Kalyani, G. A., Netra, M. K., Patil, U., et al. (2009). Cardioprotective effect of Cucumis trigonus Roxb on isoproterenol-induced myocardial infarction in rat. American Journal of Pharmacology and Toxicology,4(2), 29–37.

    Article  Google Scholar 

  80. Yadav, C. H., Akhthar, M., & Khanam, R. (2014). Isoproterenol toxicity induced ECG alterations in wistar rats: Role of histamine H3 receptor agonist imetit. IJPPS,6(5), 23–33.

    Google Scholar 

  81. Burlew, B. S., & Weber, K. T. (2000). Connective tissue and the heart: Functional significance and regulatory mechanisms. Cardiology Clinics,18(3), 435–442.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial assistance received under from “Strengthening and Development” grant of higher agricultural education programme” of Indian Council of Agricultural Research (ICAR), New Delhi. Use of Laboratory facilities established under “Nice Area of Excellence Programme of ICAR” in Department of Pharmacology and Toxicology of the Institute are also duely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Choudhury.

Ethics declarations

Conflict of interest

None of the authors have any financial or personal relationships that could inappropriately influence or bias the content of the paper.

Ethics Approval

All the experimental studies were undertaken after approval of the Institutional Animal Ethics Committee (IAEC/17/13 vide letter no 115/IAEC/17, dated 26-07-2017), DUVASU, Mathura as per the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Additional information

Handling Editor: Lorraine Chalifour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12012_2019_9531_MOESM1_ESM.tif

Supplementary material 1 (TIFF 2893 kb) Fig. S1: Representative electrocardiogram (ECG) tracings from control (A), ISO (B), OA-5 (C), OA-10 (D), OA-5 + ISO (E) and OA-10 + ISO (F) groups.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Gari, M., Choudhury, S. et al. Oleic Acid Prevents Isoprenaline-Induced Cardiac Injury: Effects on Cellular Oxidative Stress, Inflammation and Histopathological Alterations. Cardiovasc Toxicol 20, 28–48 (2020). https://doi.org/10.1007/s12012-019-09531-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09531-y

Keywords

Navigation