Skip to main content

Advertisement

Log in

Lipocalin-2 Predicts Long-Term Outcome of Normotensive Patients with Acute Pulmonary Embolism

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Normotensive patients with acute pulmonary embolism (APE) are accompanied by heterogeneously adverse events. Responding to tissue injury, lipocalin-2 (LCN-2) is elevated in experimental APE model and associated with short-term prognosis. However, the prognostic value of LCN-2 in normotensive patients with APE for long-term major adverse events (MAEs) remains unknown. We evaluated the association of plasma LCN-2 levels with the median 467-day outcome in 170 normotensive patients with APE. We also assessed whether LCN-2 could improve risk stratification. MAEs consisted of mortality or recurrence of venous thromboembolism. During follow-up, 17 (10%) patients suffered from MAEs. These patients had higher LCN-2 levels compared with patients without MAEs (median: 13.97 vs. 8.55 ng/ml, P = 0.01). The proportion of MAEs in the intermediate–low-risk group (14.0%) was higher than that in the intermediate–high-risk group (5.3%). LCN-2 levels independently had prognostic value for MAEs in overall (HR = 3.40, 95% CI 1.46–7.90) and intermediate-risk group (HR = 3.88, 95% CI 1.63–9.23). LCN-2 also showed incremental value in overall (ΔC-index: 0.13, 95% CI 0.02–0.24; category-based NRI = 0.25, 95% CI 0.07–0.42) and intermediate-risk patients (ΔC-index: 0.13, 95% CI 0.05–0.31; category-based NRI = 0.44, 95% CI 0.24–0.65). Adding LCN-2 (cut-off value = 11 ng/ml) to the current risk algorithm improved MAEs of intermediate–risk reclassification (intermediate–high vs. intermediate–low = 25.6% vs. 6.0%, P = 0.002). Elevated plasma LCN-2 levels predict long-term MAEs among normotensive patients with APE. LCN-2 might be a useful biomarker for risk stratification in the intermediate-risk group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Konstantinides, S. V., Torbicki, A., Agnelli, G., Danchin, N., Fitzmaurice, D., Galie, N., et al. (2014). 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. European Heart Journal. https://doi.org/10.1093/eurheartj/ehu283.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saar, J. A., & Maack, C. (2015). Diagnosis and management of acute pulmonary embolism. ESC guidelines 2014. Herz,40(8), 1048–1054. https://doi.org/10.1007/s00059-015-4378-0.

    Article  CAS  PubMed  Google Scholar 

  3. Dellas, C., Puls, M., Lankeit, M., Schafer, K., Cuny, M., Berner, M., et al. (2010). Elevated heart-type fatty acid-binding protein levels on admission predict an adverse outcome in normotensive patients with acute pulmonary embolism. Journal of the American College of Cardiology,55(19), 2150–2157. https://doi.org/10.1016/j.jacc.2009.10.078.

    Article  CAS  PubMed  Google Scholar 

  4. Dursunoglu, N., Dursunoglu, D., Yildiz, A. I., & Rota, S. (2016). Evaluation of cardiac biomarkers and right ventricular dysfunction in patients with acute pulmonary embolism. Anatolian Journal of Cardiology,16(4), 276–282. https://doi.org/10.5152/akd.2014.5828.

    Article  CAS  PubMed  Google Scholar 

  5. Bozbay, M., Uyarel, H., Avsar, S., Oz, A., Keskin, M., Murat, A., et al. (2016). Admission glucose level predicts in-hospital mortality in patients with acute pulmonary embolism who were treated with thrombolytic therapy. Lung,194(2), 219–226. https://doi.org/10.1007/s00408-016-9858-3.

    Article  CAS  PubMed  Google Scholar 

  6. Tatlisu, M. A., Kaya, A., Keskin, M., Avsar, S., Bozbay, M., Tatlisu, K., et al. (2017). The association of blood urea nitrogen levels with mortality in acute pulmonary embolism. Journal of Critical Care,39, 248–253. https://doi.org/10.1016/j.jcrc.2016.12.019.

    Article  CAS  PubMed  Google Scholar 

  7. Tanabe, Y., Obayashi, T., Yamamoto, T., Takayama, M., & Nagao, K. (2015). Predictive value of biomarkers for the prognosis of acute pulmonary embolism in Japanese patients: Results of the Tokyo CCU Network registry. Journal of Cardiology,66(6), 460–465. https://doi.org/10.1016/j.jjcc.2015.03.002.

    Article  PubMed  Google Scholar 

  8. Zagorski, J., Sanapareddy, N., Gellar, M. A., Kline, J. A., & Watts, J. A. (2008). Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats. Physiological Genomics,34(1), 101–111. https://doi.org/10.1152/physiolgenomics.00261.2007.

    Article  CAS  PubMed  Google Scholar 

  9. Kjeldsen, L., Bainton, D. F., Sengelov, H., & Borregaard, N. (1994). Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood,83(3), 799–807.

    Article  CAS  Google Scholar 

  10. Xiao, X., Yeoh, B. S., & Vijay-Kumar, M. (2017). Lipocalin 2: An emerging player in iron homeostasis and inflammation. Annual Review of Nutrition,37, 103–130. https://doi.org/10.1146/annurev-nutr-071816-064559.

    Article  CAS  PubMed  Google Scholar 

  11. Glaros, T., Fu, Y., Xing, J., & Li, L. (2012). Molecular mechanism underlying persistent induction of LCN2 by lipopolysaccharide in kidney fibroblasts. PLoS ONE,7(4), e34633. https://doi.org/10.1371/journal.pone.0034633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sola, A., Weigert, A., Jung, M., Vinuesa, E., Brecht, K., Weis, N., et al. (2011). Sphingosine-1-phosphate signalling induces the production of Lcn-2 by macrophages to promote kidney regeneration. The Journal of Pathology,225(4), 597–608. https://doi.org/10.1002/path.2982.

    Article  CAS  PubMed  Google Scholar 

  13. Yndestad, A., Landro, L., Ueland, T., Dahl, C. P., Flo, T. H., Vinge, L. E., et al. (2009). Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. European Heart Journal,30(10), 1229–1236. https://doi.org/10.1093/eurheartj/ehp088.

    Article  CAS  PubMed  Google Scholar 

  14. Eilenberg, W., Stojkovic, S., Kaider, A., Kozakowski, N., Domenig, C. M., Burghuber, C., et al. (2017). NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis. Clinical Chemistry and Laboratory Medicine,56(1), 147–156. https://doi.org/10.1515/cclm-2017-0156.

    Article  CAS  PubMed  Google Scholar 

  15. Helanova, K., Spinar, J., & Parenica, J. (2014). Diagnostic and prognostic utility of neutrophil gelatinase-associated lipocalin (NGAL) in patients with cardiovascular diseases–review. Kidney & blood pressure research.,39(6), 623–629. https://doi.org/10.1159/000368474.

    Article  CAS  Google Scholar 

  16. Mishra, J., Ma, Q., Prada, A., Mitsnefes, M., Zahedi, K., Yang, J., et al. (2003). Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. Journal of the American Society of Nephrology: JASN,14(10), 2534–2543.

    Article  CAS  Google Scholar 

  17. Maisel, A. S., Mueller, C., Fitzgerald, R., Brikhan, R., Hiestand, B. C., Iqbal, N., et al. (2011). Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. European Journal of Heart Failure,13(8), 846–851. https://doi.org/10.1093/eurjhf/hfr087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kostrubiec, M., Labyk, A., Pedowska-Wloszek, J., Dzikowska-Diduch, O., Wojciechowski, A., Garlinska, M., et al. (2012). Neutrophil gelatinase-associated lipocalin, cystatin C and eGFR indicate acute kidney injury and predict prognosis of patients with acute pulmonary embolism. Heart,98(16), 1221–1228. https://doi.org/10.1136/heartjnl-2012-301884.

    Article  CAS  PubMed  Google Scholar 

  19. Polo Friz, H., Corno, V., Orenti, A., Buzzini, C., Crivellari, C., Petri, F., et al. (2017). Comorbidity assessment as predictor of short and long-term mortality in elderly patients with hemodynamically stable acute pulmonary embolism. Journal of Thrombosis and Thrombolysis,44(3), 316–323. https://doi.org/10.1007/s11239-017-1540-y.

    Article  PubMed  Google Scholar 

  20. Kreit, J. W. (2004). The impact of right ventricular dysfunction on the prognosis and therapy of normotensive patients with pulmonary embolism. Chest,125(4), 1539–1545.

    Article  Google Scholar 

  21. Sydykov, A., Mamazhakypov, A., Petrovic, A., Kosanovic, D., Sarybaev, A. S., Weissmann, N., et al. (2018). Inflammatory mediators drive adverse right ventricular remodeling and dysfunction and serve as potential biomarkers. Frontiers in Physiology,9, 609. https://doi.org/10.3389/fphys.2018.00609.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dewachter, L., & Dewachter, C. (2018). Inflammation in right ventricular failure: Does It matter? Frontiers in Physiology,9, 1056. https://doi.org/10.3389/fphys.2018.01056.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Campian, M. E., Hardziyenka, M., de Bruin, K., van Eck-Smit, B. L., de Bakker, J. M., Verberne, H. J., et al. (2010). Early inflammatory response during the development of right ventricular heart failure in a rat model. European Journal of Heart Failure,12(7), 653–658. https://doi.org/10.1093/eurjhf/hfq066.

    Article  CAS  PubMed  Google Scholar 

  24. Sung, H. K., Chan, Y. K., Han, M., Jahng, J. W. S., Song, E., Danielson, E., et al. (2017). Lipocalin-2 (NGAL) attenuates autophagy to exacerbate cardiac apoptosis induced by myocardial ischemia. Journal of Cellular Physiology,232(8), 2125–2134. https://doi.org/10.1002/jcp.25672.

    Article  CAS  PubMed  Google Scholar 

  25. Chan, Y. K., Sung, H. K., Jahng, J. W., Kim, G. H., Han, M., & Sweeney, G. (2016). Lipocalin-2 inhibits autophagy and induces insulin resistance in H9c2 cells. Molecular and Cellular Endocrinology,430, 68–76. https://doi.org/10.1016/j.mce.2016.04.006.

    Article  CAS  PubMed  Google Scholar 

  26. Marques, F. Z., Prestes, P. R., Byars, S. G., Ritchie, S. C., Wurtz, P., Patel, S. K., et al. (2017). Experimental and human evidence for Lipocalin-2 (Neutrophil gelatinase-associated lipocalin [NGAL]) in the development of cardiac hypertrophy and heart failure. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.117.005971.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tarjus, A., Martinez-Martinez, E., Amador, C., Latouche, C., El Moghrabi, S., Berger, T., et al. (2015). Neutrophil gelatinase-associated lipocalin, a novel mineralocorticoid biotarget, mediates vascular profibrotic effects of mineralocorticoids. Hypertension,66(1), 158–166. https://doi.org/10.1161/HYPERTENSIONAHA.115.05431.

    Article  CAS  PubMed  Google Scholar 

  28. Becattini, C., Agnelli, G., Lankeit, M., Masotti, L., Pruszczyk, P., Casazza, F., et al. (2016). Acute pulmonary embolism: mortality prediction by the 2014 European Society of Cardiology risk stratification model. European Respiratory Journal,48(3), 780–786. https://doi.org/10.1183/13993003.00024-2016.

    Article  PubMed  Google Scholar 

  29. Zhou, X. Y., Ben, S. Q., Chen, H. L., & Ni, S. S. (2012). The prognostic value of pulmonary embolism severity index in acute pulmonary embolism: a meta-analysis. Respiratory Research,13, 111. https://doi.org/10.1186/1465-9921-13-111.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vinson, D. R., Ballard, D. W., Mark, D. G., Huang, J., Reed, M. E., Rauchwerger, A. S., et al. (2016). Risk stratifying emergency department patients with acute pulmonary embolism: Does the simplified Pulmonary Embolism Severity Index perform as well as the original? Thrombosis Research,148, 1–8. https://doi.org/10.1016/j.thromres.2016.09.023.

    Article  CAS  PubMed  Google Scholar 

  31. Gussoni, G., Frasson, S., La Regina, M., Di Micco, P., & Monreal, M. (2013). Three-month mortality rate and clinical predictors in patients with venous thromboembolism and cancer. Findings from the RIETE registry. Thrombosis Research,131(1), 24–30. https://doi.org/10.1016/j.thromres.2012.10.007.

    Article  CAS  PubMed  Google Scholar 

  32. Alotaibi, G., Wu, C., Senthilselvan, A., & McMurtry, M. S. (2018). Short- and long-term mortality after pulmonary embolism in patients with and without cancer. Vascular Medicine (London, England),23(3), 261–266. https://doi.org/10.1177/1358863x18754692.

    Article  Google Scholar 

  33. Liu, X., Chang, S., Fu, C., Huo, Z., Zhou, J., Liu, C., et al. (2017). Predictors of mid-term prognosis and adverse factors in acute pulmonary embolism. Therapeutic Advances in Respiratory Disease,11(8), 293–300. https://doi.org/10.1177/1753465817717168.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wicki, J., Perrier, A., Perneger, T. V., Bounameaux, H., & Junod, A. F. (2000). Predicting adverse outcome in patients with acute pulmonary embolism: a risk score. Thrombosis and Haemostasis,84(4), 548–552.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 81790622), Beijing Municipal Science & Technology Commission (Grant No. Z171100000417002), Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (Grant No. 2017-I2 M-3-003), and Capital Clinical Characteristic Application Program (Grant No. 2018-BKJ01). We thank Ellen Knapp, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulin Li, Zhi-Cheng Jing or Jie Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Liu, Z., Lu, J. et al. Lipocalin-2 Predicts Long-Term Outcome of Normotensive Patients with Acute Pulmonary Embolism. Cardiovasc Toxicol 20, 101–110 (2020). https://doi.org/10.1007/s12012-019-09525-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09525-w

Keywords

Navigation