Skip to main content
Log in

Impact of LPS-Induced Cardiomyoblast Cell Apoptosis Inhibited by Earthworm Extracts

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Dilong is an earthworm extract with a dense nutritional content, widely used in Chinese herbal medicine to remove stasis and stimulate wound healing. Earthworm extracts are traditionally used by indigenous people throughout the world. How this Dilong inhibits Lipopolysaccharide (LPS)-induced cardiomyoblast cell apoptosis is still unclear. This study investigates the Dilong extract effect on LPS-induced apoptosis in H9c2 cardiomyoblast cells. LPS (1 μg/ml) administration for 24 h induced apoptosis in H9c2 cells. Cell apoptosis was detected using MTT, LDH, TUNEL assay and JC-1 staining. Western blot analysis was used to detect pro-apoptotic and anti-apoptotic proteins. Dilong extract totally blocked the LPS impact, leading to the activation of anti-apoptotic proteins, Bcl-2 and Bcl-xL, stabilized the mitochondria membrane and down-regulated the extrinsic and intrinsic pro-apoptotic proteins, TNF-α, active caspase-8, t-Bid, Bax, active caspase-9 and active caspase-3. Dilong could potentially serve as a cardio protective agent against LPS-induced H9c2 cardiomyoblast cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Natanson, C., Esposito, C. J., & Banks, S. M. (1998). The sirens’ songs of confirmatory sepsis trials: Selection bias and sampling error. Critical Care Medicine, 26, 1927–1931.

    Article  CAS  PubMed  Google Scholar 

  2. Dombrovskiy, V. Y., Martin, A. A., Sunderram, J., & Paz, H. L. (2007). Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: A trend analysis from 1993 to 2003. Critical Care Medicine, 35, 1244–1250.

    Article  PubMed  Google Scholar 

  3. Lu, Y. C., Yeh, W. C., & Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42, 145–151.

    Article  CAS  PubMed  Google Scholar 

  4. Merx, M. W., & Weber, C. (2007). Sepsis and the heart. Circulation, 116, 793–802.

    Article  CAS  PubMed  Google Scholar 

  5. Hotchkiss, R. S., & Karl, I. E. (2003). The pathophysiology and treatment of sepsis. New England Journal of Medicine, 348, 138–150.

    Article  CAS  PubMed  Google Scholar 

  6. Stoll, L. L., Denning, G. M., & Weintraub, N. L. (2004). Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 2227–2236.

    Article  CAS  PubMed  Google Scholar 

  7. Boyd, J. H., Mathur, S., Wang, Y., Bateman, R. M., & Walley, K. R. (2006). Toll-like receptor stimulation in cardiomyocytes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovascular Research, 72, 384–393.

    Article  CAS  PubMed  Google Scholar 

  8. Yasuda, S., & Lew, W. Y. (1997). Lipopolysaccharide depresses cardiac contractility and beta-adrenergic contractile response by decreasing myofilament response to Ca2+ in cardiac myocytes. Circulation Research, 81, 1011–1020.

    Article  CAS  PubMed  Google Scholar 

  9. Meldrum, D. R. (1998). Tumor necrosis factor in the heart. American Journal of Physiology, 274, R577–R595.

    CAS  PubMed  Google Scholar 

  10. van der Bruggen, T., Nijenhuis, S., van Raaij, E., Verhoef, J., & van Asbeck, B. S. (1999). Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infection and Immunity, 67(8), 3824–3829.

    PubMed Central  PubMed  Google Scholar 

  11. van Empel, V. P., Bertrand, A. T., Hofstra, L., Crijns, H. J., Doevendans, P. A., & De Windt, L. J. (2005). Myocyte apoptosis in heart failure. Cardiovascular Research, 67, 21–29.

    Article  PubMed  Google Scholar 

  12. Kang, P. M., & Izumo, S. (2003). Apoptosis in heart: Basic mechanisms and implications in cardiovascular diseases. Trends in Molecular Medicine, 9, 177–182.

    Article  CAS  PubMed  Google Scholar 

  13. Haunstetter, A., & Izumo, S. (1998). Apoptosis: Basic mechanisms and implications for cardiovascular disease. Circulation Research, 82, 1111–1129.

    Article  CAS  PubMed  Google Scholar 

  14. Burlacu, A. (2003). Regulation of apoptosis by Bcl-2 family proteins. Journal of Cellular and Molecular Medicine, 7, 249–257.

    Article  CAS  PubMed  Google Scholar 

  15. Desagher, S., & Martinou, J. C. (2000). Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 10, 369–377.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Z. X., & Wang, F. F. (1992). Effects of crude extract of earthworm on promoting blood circulation to removing stasis. Zhongguo Zhong Xi Yi Jie He Za Zhi, 12(741–743), 710.

    Google Scholar 

  17. Grdisa, M., Popovic, M., & Hrzenjak, T. (2004). Stimulation of growth factor synthesis in skin wounds using tissue extract (G-90) from the earthworm Eissenia foetida. Cell Biochemistry and Function, 22, 373–378.

    Article  CAS  PubMed  Google Scholar 

  18. Tien, Y. C., Lin, J. Y., Lai, C. H., Kuo, C. H., Lin, W. Y., Tsai, C. H., et al. (2010). Carthamus tinctorius L. prevents LPS-induced TNFalpha signaling activation and cell apoptosis through JNK1/2-NFkappaB pathway inhibition in H9c2 cardiomyoblast cells. J Ethnopharmacol, 130, 505–513.

  19. Sam, A. D, 2nd, Sharma, A. C., Law, W. R., & Ferguson, J. L. (1997). Splanchnic vascular control during sepsis and endotoxemia. Front Bioscience, 2, e72–e92.

    CAS  Google Scholar 

  20. Parrillo, J. E., Parker, M. M., Natanson, C., Suffredini, A. F., Danner, R. L., Cunnion, R. E., et al. (1990). Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Annals of Internal Medicine, 113, 227–242.

    Article  CAS  PubMed  Google Scholar 

  21. Chopra, M., & Sharma, A. C. (2007). Distinct cardiodynamic and molecular characteristics during early and late stages of sepsis-induced myocardial dysfunction. Life Sciences, 81, 306–316.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ren, J., Ren, B. H., & Sharma, A. C. (2002). Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock, 18, 285–288.

    Article  PubMed  Google Scholar 

  23. Gupta, A., Brahmbhatt, S., Kapoor, R., Loken, L., & Sharma, A. C. (2005). Chronic peritoneal sepsis: Myocardial dysfunction, endothelin and signaling mechanisms. Front Biosci, 10, 3183–3205.

    Article  CAS  PubMed  Google Scholar 

  24. Niebauer, J., Volk, H. D., Kemp, M., Dominguez, M., Schumann, R. R., Rauchhaus, M., et al. (1999). Endotoxin and immune activation in chronic heart failure: A prospective cohort study. The Lancet, 353, 1838–1842.

    Article  CAS  Google Scholar 

  25. Patten, M., Stube, S., Thoma, B., & Wieland, T. (2003). Interleukin-1beta mediates endotoxin- and tumor necrosis factor alpha-induced RGS16 protein expression in cultured cardiac myocytes. Naunyn Schmiedebergs Arch Pharmacological, 368, 360–365.

    Article  CAS  Google Scholar 

  26. O’Dwyer, S. T., Michie, H. R., Ziegler, T. R., Revhaug, A., Smith, R. J., & Wilmore, D. W. (1988). A single dose of endotoxin increases intestinal permeability in healthy humans. Archives of Surgery, 123, 1459–1464.

    Article  PubMed  Google Scholar 

  27. Salzman, A. L., Wang, H., Wollert, P. S., Vandermeer, T. J., Compton, C. C., Denenberg, A. G., et al. (1994). Endotoxin-induced ileal mucosal hyperpermeability in pigs: Role of tissue acidosis. American Journal of Physiology, 266, G633–G646.

    CAS  PubMed  Google Scholar 

  28. Liu, C. J., Lo, J. F., Kuo, C. H., Chu, C. H., Chen, L. M., Tsai, F. J., et al. (2009). Akt mediates 17beta-estradiol and/or estrogen receptor-alpha inhibition of LPS-induced tumor necresis factor-alpha expression and myocardial cell apoptosis by suppressing the JNK1/2-NFkappaB pathway. Journal of Cellular and Molecular Medicine, 13, 3655–3667.

    Article  PubMed  Google Scholar 

  29. Chang, G., Zhang, D., Liu, J., Zhang, P., Ye, L., Lu, K., et al. (2014). Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells. Experimental Biology and Medicine, 239(4), 414–422.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the Taiwan Department of Health Clinical Trial and Research Center for Excellence (DOH102-TD-B-111-004) and in part by (CMU99-EW-05, CMU102-BC-6) China Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, PC., Tien, YC., Day, C.H. et al. Impact of LPS-Induced Cardiomyoblast Cell Apoptosis Inhibited by Earthworm Extracts. Cardiovasc Toxicol 15, 172–179 (2015). https://doi.org/10.1007/s12012-014-9281-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9281-z

Keywords

Navigation