Skip to main content
Log in

Effect of Nigella sativa Supplementation to Exercise Training in a Novel Model of Physiological Cardiac Hypertrophy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Exercise training is employed as supplementary therapy to patients with heart failure due to its multiple beneficial cardiac effects including physiological remodeling of the heart. However, precautions might be taken for the concomitant high oxidant release. Nigella sativa (NS) has been found to induce cardiac hypertrophy and enhance cardiac function. Combination of NS supplementation and exercise training might induce a safer model of cardiac hypertrophy. Our aim was to study biomarkers associated with cardiac hypertrophy induced by NS supplementation of exercise-trained rats. Forty-five adult male Wistar rats (body weight 150–220 g) were divided equally into three groups: control, exercise-trained (ET) and NS-treated–exercise-trained (NSET) groups. Daily 800 mg/kg NS was administered orally to NSET group for 8 weeks. Rats of the ET and NSET groups were subjected to treadmill running sessions for 2 h/day for 8 weeks. By the end of the experiment, the following were recorded: body, heart and left ventricular weights (BW, HW, LVW), cardiomyocyte diameter, serum growth hormone, insulin growth factor-I (IGF-I), thyroid hormones, catecholamines, total nitrate, ICAM and antioxidant capacity. A homogenous cardiac hypertrophy was evidenced by increased HW/BW, LVW/BW ratios and cardiomyocyte diameter in the two groups of exercise-trained compared with control rats. Rats of ET group had higher growth hormone. Those of NSET group developed higher IGF-I and total antioxidant capacity, as well as lower serum thyroxin level. Simultaneous NS supplementation to an exercise training program preserves and augments exercise-induced physiological cardiac hypertrophy with step-forward adaptive signs of increased IGF-I and reduced thyroxin level, and with an added advantage of elevation of total serum antioxidant capacity. Thus, the novel model of NSET-induced cardiac hypertrophy might be introduced as a new therapeutic strategy for the treatment of heart failure with superior advantages to exercise training alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thompson, P. D., Buchner, D., Pina, I. L., Balady, G. J., Williams, M. A., Marcus, B. H., et al. (2003). Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: A statement from the Council on Clinical Cardiology (subcommittee on exercise, rehabilitation, and prevention) and the Council on Nutrition, Physical Activity, and Metabolism (subcommittee on physical activity). Circulation, 107(24), 3109–3116.

    Article  PubMed  Google Scholar 

  2. Gielen, S., Schuler, G., & Adams, V. (2010). Cardiovascular effects of exercise training: Molecular mechanisms. Circulation, 122(12), 1221–1238.

    Article  PubMed  Google Scholar 

  3. Cornelissen, V. A., & Smart, N. A. (2013). Exercise training for blood pressure: A systematic review and meta-analysis. Journal of the American Heart Association, 2(1), e004473.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Benito, B., & Nattel, S. (2009). Exercise training as a treatment for heart failure: Potential mechanisms and clinical implications. Journal of Physiology, 587(Pt 21), 5011–5013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Garciarena, C. D., Pinilla, O. A., Nolly, M. B., Laguens, R. P., Escudero, E. M., Cingolani, H. E., et al. (2009). Endurance training in the spontaneously hypertensive rat: Conversion of pathological into physiological cardiac hypertrophy. Hypertension, 53(4), 708–714.

    Article  CAS  PubMed  Google Scholar 

  6. De Maeyer, C., Beckers, P., Vrints, C. J., & Conraads, V. M. (2013). Exercise training in chronic heart failure. Therapeutic Advances in Chronic Disease, 4(3), 105–117.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Clerk, A., Cullingford, T. E., Fuller, S. J., Giraldo, A., Markou, T., Pikkarainen, S., et al. (2007). Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. Journal of Cellular Physiology, 212(2), 311–322.

    Article  CAS  PubMed  Google Scholar 

  8. Seimi, S. K., Seinosuke, K., Tsuyoshi, S., Tomomi, U., Tetsuaki, H., Miki, K., et al. (2004). Glycogen synthase kinase-3beta is involved in the process of myocardial hypertrophy stimulated by insulin-like growth factor-1. Circulation Journal, 68(3), 247–253.

    Article  PubMed  Google Scholar 

  9. Sagara, S., Osanai, T., Itoh, T., Izumiyama, K., Shibutani, S., Hanada, K., et al. (2012). Overexpression of coupling factor 6 attenuates exercise-induced physiological cardiac hypertrophy by inhibiting PI3K/Akt signaling in mice. Journal of Hypertension, 30(4), 778–786.

    Article  CAS  PubMed  Google Scholar 

  10. Heineke, J., & Molkentin, J. D. (2006). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, 7(8), 589–600.

    Article  CAS  PubMed  Google Scholar 

  11. Vollaard, N. B., Shearman, J. P., & Cooper, C. E. (2005). Exercise-induced oxidative stress: Myths, realities and physiological relevance. Sports Medicine, 35(12), 1045–1062.

    Article  PubMed  Google Scholar 

  12. Seddon, M., Looi, Y. H., & Shah, A. M. (2007). Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart, 93(8), 903–907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Afanas’ev, I. (2011). ROS and RNS signaling in heart disorders: Could antioxidant treatment be successful? Oxidative Medicine and Cellular Longevity, 2011, 293769.

    PubMed Central  PubMed  Google Scholar 

  14. Ali, B. H., & Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytotherapy Research, 17(4), 299–305.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Ghamdi, M. S. (2001). The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of Ethnopharmacology, 76(1), 45–48.

    Article  CAS  PubMed  Google Scholar 

  16. Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323–328.

    Article  CAS  PubMed  Google Scholar 

  17. Salem, M. L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. International Immunopharmacology, 5(13–14), 1749–1770.

    Article  CAS  PubMed  Google Scholar 

  18. Hawsawi, Z. A., Ali, B. A., & Bamosa, A. O. (2001). Effect of Nigella sativa (black seed) and thymoquinone on blood glucose in albino rats. Annals of Saudi Medicine, 21(3–4), 242–244.

    CAS  PubMed  Google Scholar 

  19. Bamosa, A. O., Ali, B. A., & al-Hawsawi, Z. A. (2002). The effect of thymoquinone on blood lipids in rats. Indian Journal of Physiology and Pharmacology, 46(2), 195–201.

    CAS  PubMed  Google Scholar 

  20. El-Bahai, M. N., Al-Hariri, M. T., Yar, T., & Bamosa, A. O. (2009). Cardiac inotropic and hypertrophic effects of Nigella sativa supplementation in rats. International Journal of Cardiology, 131(3), e115–e117.

    Article  CAS  PubMed  Google Scholar 

  21. Yar, T., El-Hariri, M., El-Bahai, M. N., & Bamosa, A. O. (2008). Effects of Nigella sativa supplementation for one month on cardiac reserve in rats. Indian Journal of Physiology and Pharmacology, 52(2), 141–148.

    CAS  PubMed  Google Scholar 

  22. Ganong, W. F. (Ed.). (2005). Review of medical physiology (22nd ed.). New York: McGraw Hill.

    Google Scholar 

  23. Manetta, J., Brun, J. F., Maimoun, L., Callis, A., Prefaut, C., & Mercier, J. (2002). Effect of training on the GH/IGF-I axis during exercise in middle-aged men: Relationship to glucose homeostasis. American Journal of Physiology. Endocrinology and Metabolism, 283(5), E929–E936.

    CAS  PubMed  Google Scholar 

  24. Chicharro, J. L., Lopez-Calderon, A., Hoyos, J., Martin-Velasco, A. I., Villa, G., Villanua, M. A., et al. (2001). Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3. British Journal of Sports Medicine, 35(5), 303–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Iwasaki, K., Zhang, R., Zuckerman, J. H., & Levine, B. D. (2003). Dose–response relationship of the cardiovascular adaptation to endurance training in healthy adults: How much training for what benefit? Journal of Applied Physiology, 95(4), 1575–1583.

    PubMed  Google Scholar 

  26. Meckel, Y., Nemet, D., Bar-Sela, S., Radom-Aizik, S., Cooper, D. M., Sagiv, M., et al. (2011). Hormonal and inflammatory responses to different types of sprint interval training. Journal of Strength and Conditioning Research, 25(8), 2161–2169.

    Article  PubMed  Google Scholar 

  27. Eliakim, A., Brasel, J. A., Mohan, S., Wong, W. L., & Cooper, D. M. (1998). Increased physical activity and the growth hormone-IGF-I axis in adolescent males. American Journal of Physiology, 275(1 Pt 2), R308–R314.

    CAS  PubMed  Google Scholar 

  28. Nindl, B. C., & Pierce, J. R. (2010). Insulin-like growth factor I as a biomarker of health, fitness, and training status. Medicine and Science in Sports and Exercise, 42(1), 39–49.

    Article  CAS  PubMed  Google Scholar 

  29. Alen, M., Pakarinen, A., & Hakkinen, K. (1993). Effects of prolonged training on serum thyrotropin and thyroid hormones in elite strength athletes. Journal of Sports Sciences, 11(6), 493–497.

    Article  CAS  PubMed  Google Scholar 

  30. Pakarinen, A., Hakkinen, K., & Alen, M. (1991). Serum thyroid hormones, thyrotropin and thyroxine binding globulin in elite athletes during very intense strength training of one week. Journal of Sports Medicine and Physical Fitness, 31(2), 142–146.

    CAS  PubMed  Google Scholar 

  31. Pakarinen, A., Alen, M., Hakkinen, K., & Komi, P. (1988). Serum thyroid hormones, thyrotropin and thyroxine binding globulin during prolonged strength training. European Journal of Applied Physiology and Occupational Physiology, 57(4), 394–398.

    CAS  PubMed  Google Scholar 

  32. Rosolowska-Huszcz, D. (1998). The effect of exercise training intensity on thyroid activity at rest. Journal of Physiology and Pharmacology, 49(3), 457–466.

    CAS  PubMed  Google Scholar 

  33. Grandys, M., Majerczak, J., Duda, K., Zapart-Bukowska, J., Sztefko, K., & Zoladz, J. A. (2008). The effect of endurance training on muscle strength in young, healthy men in relation to hormonal status. Journal of Physiology and Pharmacology, 59(Suppl 7), 89–103.

    PubMed  Google Scholar 

  34. Hohtari, H., Pakarinen, A., & Kauppila, A. (1987). Serum concentrations of thyrotropin, thyroxine, triiodothyronine and thyroxine binding globulin in female endurance runners and joggers. Acta Endocrinologica, 114(1), 41–46.

    CAS  PubMed  Google Scholar 

  35. Neri Serneri, G. G., Boddi, M., Modesti, P. A., Cecioni, I., Coppo, M., Padeletti, L., et al. (2001). Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circulation Research, 89(11), 977–982.

    Article  CAS  PubMed  Google Scholar 

  36. Meredith, I. T., Friberg, P., Jennings, G. L., Dewar, E. M., Fazio, V. A., Lambert, G. W., et al. (1991). Exercise training lowers resting renal but not cardiac sympathetic activity in humans. Hypertension, 18(5), 575–582.

    Article  CAS  PubMed  Google Scholar 

  37. Saxton, J. M., Zwierska, I., Hopkinson, K., Espigares, E., Choksy, S., Nawaz, S., et al. (2008). Effect of upper- and lower-limb exercise training on circulating soluble adhesion molecules, hs-CRP and stress proteins in patients with intermittent claudication. European Journal of Vascular and Endovascular Surgery, 35(5), 607–613.

    Article  CAS  PubMed  Google Scholar 

  38. Lawson, C., & Wolf, S. (2009). ICAM-1 signaling in endothelial cells. Pharmacological Reports, 61(1), 22–32.

    Article  CAS  PubMed  Google Scholar 

  39. Hwang, S. J., Ballantyne, C. M., Sharrett, A. R., Smith, L. C., Davis, C. E., Gotto, A. M., Jr, et al. (1997). Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: The Atherosclerosis Risk In Communities (ARIC) study. Circulation, 96(12), 4219–4225.

    Article  CAS  PubMed  Google Scholar 

  40. Adamopoulos, S., Parissis, J., Kroupis, C., Georgiadis, M., Karatzas, D., Karavolias, G., et al. (2001). Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. European Heart Journal, 22(9), 791–797.

    Article  CAS  PubMed  Google Scholar 

  41. Zoppini, G., Targher, G., Zamboni, C., Venturi, C., Cacciatori, V., Moghetti, P., et al. (2006). Effects of moderate-intensity exercise training on plasma biomarkers of inflammation and endothelial dysfunction in older patients with type 2 diabetes. Nutrition, Metabolism, and Cardiovascular Diseases, 16(8), 543–549.

    Article  CAS  PubMed  Google Scholar 

  42. Yang, A. L., & Chen, H. I. (2003). Chronic exercise reduces adhesion molecules/iNOS expression and partially reverses vascular responsiveness in hypercholesterolemic rabbit aortae. Atherosclerosis, 169(1), 11–17.

    Article  CAS  PubMed  Google Scholar 

  43. Poveda, J. J., Riestra, A., Salas, E., Cagigas, M. L., Lopez-Somoza, C., Amado, J. A., et al. (1997). Contribution of nitric oxide to exercise-induced changes in healthy volunteers: Effects of acute exercise and long-term physical training. European Journal of Clinical Investigation, 27(11), 967–971.

    Article  CAS  PubMed  Google Scholar 

  44. de Moraes, C., Davel, A. P., Rossoni, L. V., Antunes, E., & Zanesco, A. (2008). Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats. BMC Physiology, 8, 12.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Otsuki, T., Maeda, S., Iemitsu, M., Saito, Y., Tanimura, Y., Ajisaka, R., et al. (2007). Vascular endothelium-derived factors and arterial stiffness in strength- and endurance-trained men. American Journal of Physiology Heart and Circulatory Physiology, 292(2), H786–H791.

    CAS  PubMed  Google Scholar 

  46. Garcia, J. A., & Incerpi, E. K. (2008). Factors and mechanisms involved in left ventricular hypertrophy and the anti-hypertrophic role of nitric oxide. Arquivos Brasileiros de Cardiologia, 90(6), 409–416.

    Article  PubMed  Google Scholar 

  47. Kohno, H., Furukawa, S., Naito, H., Minamitani, K., Ohmori, D., & Yamakura, F. (2002). Contribution of nitric oxide, angiotensin II and superoxide dismutase to exercise-induced attenuation of blood pressure elevation in spontaneously hypertensive rats. Japanese Heart Journal, 43(1), 25–34.

    Article  CAS  PubMed  Google Scholar 

  48. Gomez-Cabrera, M. C., Domenech, E., & Vina, J. (2008). Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radical Biology & Medicine, 44(2), 126–131.

    Article  CAS  Google Scholar 

  49. Powers, S. K., Quindry, J. C., & Kavazis, A. N. (2008). Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radical Biology & Medicine, 44(2), 193–201.

    Article  CAS  Google Scholar 

  50. Finkel, T. (1999). Signal transduction by reactive oxygen species in non-phagocytic cells. Journal of Leukocyte Biology, 65(3), 337–340.

    CAS  PubMed  Google Scholar 

  51. Nakagami, H., Takemoto, M., & Liao, J. K. (2003). NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 35(7), 851–859.

    Article  CAS  PubMed  Google Scholar 

  52. Nagi, M. N., & Mansour, M. A. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41(3), 283–289.

    Article  CAS  PubMed  Google Scholar 

  53. Abdel-Wahhab, M. A., & Aly, S. E. (2005). Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. Journal of Applied Toxicology, 25(3), 218–223.

    Article  CAS  PubMed  Google Scholar 

  54. Kanter, M., Coskun, O., Korkmaz, A., & Oter, S. (2004). Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 279(1), 685–691.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the deanship of scientific research in University of Dammam for the Grant No. 8086 that allowed the execution of this research.

Conflict of interest

All authors declare that there was no actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three (3) years of beginning the work submitted that could inappropriately influence (bias) their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Al-Asoom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Asoom, L.I., Al-Shaikh, B.A., Bamosa, A.O. et al. Effect of Nigella sativa Supplementation to Exercise Training in a Novel Model of Physiological Cardiac Hypertrophy. Cardiovasc Toxicol 14, 243–250 (2014). https://doi.org/10.1007/s12012-014-9248-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9248-0

Keywords

Navigation