Skip to main content
Log in

Comparison of Nigella sativa- and Exercise-Induced Models of Cardiac Hypertrophy: Structural and Electrophysiological Features

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Exercise training is employed as supplementary therapeutic intervention for heart failure, due to its ability to induce physiological cardiac hypertrophy. In parallel, supplementation with Nigella sativa (N. sativa) was found to enhance myocardial function and induce cardiac hypertrophy. In this study, we aim to compare the morphological and electrophysiological changes associated with these patterns of cardiac hypertrophy and the possible changes upon administration of N. sativa to exercise-trained animals. Fifty-six adult Wistar rats were divided into: control, Nigella-treated (N), exercise-trained (E), and Nigella-treated–exercise-trained (NE) rats. Daily 800 mg/kg N. sativa was administered orally to N and NE. E and NE ran on treadmill, 2 h/day. At the end of 8 weeks ECG, body weight (BW), heart weight (HW), and left ventricular weight (LVW) were recorded. Hematoxylin and Eosin and periodic acid–Schiff sections were prepared to study the histology of left ventricles and to measure diameter of cardiomyocytes (Cdia). HW/BW, LVW/BW, and mean Cdia were significantly higher in all experimental animals compared to the controls. Histology showed normal cardiomyocytes with no fibrosis. ECG showed significantly lower heart rates, higher QRS amplitude, and ventricular specific potential in NE group compared to control group. Supplementation of N. sativa demonstrated a synergistic effect with exercise training as Nigella–exercise-induced cardiac hypertrophy had lower heart rate and well-matched electrical activity of the heart to its mass. Therefore, this model of cardiac hypertrophy might be introduced as a new therapeutic strategy for treatment for heart failure with superior advantages to exercise training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

N. sativa :

Nigella sativa

C:

Control

N:

Nigella-treated

E:

Exercise-trained

NE:

Nigella-treated–exercise-trained

HW:

Heart weight

LVW:

Left ventricular weight

H&E:

Haematoxylin and eosin

PAS:

Periodic acid–Schiff

Cdia:

Cell diameter

VDP:

QRS voltage-duration product

VSP:

Ventricular specific potential

SEM:

Standard error of the mean

ANOVA:

Analysis of variance

LSD:

Fisher’s least significant difference

References

  1. Benito, B., & Nattel, S. (2009). Exercise training as a treatment for heart failure: Potential mechanisms and clinical implications. Journal of Physiology, 587(Pt 21), 5011–5013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Garciarena, C. D., Pinilla, O. A., Nolly, M. B., Laguens, R. P., Escudero, E. M., Cingolani, H. E., et al. (2009). Endurance training in the spontaneously hypertensive rat: Conversion of pathological into physiological cardiac hypertrophy. Hypertension, 53(4), 708–714.

    Article  CAS  PubMed  Google Scholar 

  3. Benito, B., Gay-Jordi, G., Serrano-Mollar, A., Guasch, E., Shi, Y., Tardif, J. C., et al. (2011). Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation, 123(1), 13–22.

    Article  PubMed  Google Scholar 

  4. Zaidi, A., & Sharma, S. (2013). Exercise and heart disease: From athletes and arrhythmias to hypertrophic cardiomyopathy and congenital heart disease. Future cardiology, 9(1), 119–136.

    Article  CAS  PubMed  Google Scholar 

  5. McClaskey, D., Lee, D., & Buch, E. (2013). Outcomes among athletes with arrhythmias and electrocardiographic abnormalities: Implications for ECG interpretation. Future Cardiology, 43(10), 979–991.

    Google Scholar 

  6. Rowland, T. (2011). Is the ‘athlete’s heart’ arrhythmogenic? Implications for sudden cardiac death. Sports Medicine (Auckland, N. Z.), 41(5), 401–411.

    Article  Google Scholar 

  7. Ali, B. H., & Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytotherapy Research, 17(4), 299–305.

    Article  CAS  PubMed  Google Scholar 

  8. Mansour, M. A., Nagi, M. N., El-Khatib, A. S., & Al-Bekairi, A. M. (2002). Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: A possible mechanism of action. Cell Biochemistry and Function, 20(2), 143–151.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Ghamdi, M. S. (2001). The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of Ethnopharmacology, 76(1), 45–48.

    Article  CAS  PubMed  Google Scholar 

  10. Salem, M. L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. International Immunopharmacology, 5(13–14), 1749–1770.

    Article  CAS  PubMed  Google Scholar 

  11. Hawsawi, Z. A., Ali, B. A., & Bamosa, A. O. (2001). Effect of Nigella sativa (Black Seed) and thymoquinone on blood glucose in albino rats. Annals of Saudi Medicine, 21(3–4), 242–244.

    CAS  PubMed  Google Scholar 

  12. Bamosa, A., Ali, B., & Sowayan, S. (1997). Effect of oral ingestion of Nigella sativa seeds on some blood parameters. Saudi Pharmaceutical Journal, 5(2–3), 126–129.

    Google Scholar 

  13. Zaoui, A., Cherrah, Y., Lacaille-Dubois, M. A., Settaf, A., Amarouch, H., & Hassar, M. (2000). Diuretic and hypotensive effects of Nigella sativa in the spontaneously hypertensive rat. Therapie, 55(3), 379–382.

    CAS  PubMed  Google Scholar 

  14. el Tahir, K. E., Ashour, M. M., & al-Harbi, M. M. (1993). The cardiovascular actions of the volatile oil of the black seed (Nigella sativa) in rats: Elucidation of the mechanism of action. General Pharmacology, 24(5), 1123–1131.

    PubMed  Google Scholar 

  15. El-Bahai, M. N., Al-Hariri, M. T., Yar, T., & Bamosa, A. O. (2009). Cardiac inotropic and hypertrophic effects of Nigella sativa supplementation in rats. International Journal of Cardiology, 131(3), e115–e117.

    Article  CAS  PubMed  Google Scholar 

  16. Barbier, J., Rannou-Bekono, F., Marchais, J., Tanguy, S., & Carre, F. (2007). Alterations of beta3-adrenoceptors expression and their myocardial functional effects in physiological model of chronic exercise-induced cardiac hypertrophy. Molecular and Cellular Biochemistry, 300(1–2), 69–75.

    Article  CAS  PubMed  Google Scholar 

  17. Iemitsu, M., Maeda, S., Otsuki, T., Goto, K., & Miyauchi, T. (2006). Time course alterations of myocardial endothelin-1 production during the formation of exercise training-induced cardiac hypertrophy. Experimental Biology and Medicine (Maywood), 231(6), 871–875.

    CAS  Google Scholar 

  18. Kuhn, M., Holtwick, R., Baba, H. A., Perriard, J. C., Schmitz, W., & Ehler, E. (2002). Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart, 87(4), 368–374.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Holtwick, R., van Eickels, M., Skryabin, B. V., Baba, H. A., Bubikat, A., Begrow, F., et al. (2003). Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. Journal of Clinical Investigation, 111(9), 1399–1407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kilic, A., Bubikat, A., Gassner, B., Baba, H. A., & Kuhn, M. (2007). Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling. Endocrinology, 148(9), 4162–4169.

    Article  CAS  PubMed  Google Scholar 

  21. Corrado, D., Biffi, A., Basso, C., Pelliccia, A., & Thiene, G. (2009). 12-lead ECG in the athlete: Physiological versus pathological abnormalities. British Journal of Sports Medicine, 43(9), 669–676.

    Article  CAS  PubMed  Google Scholar 

  22. Le, V. V., Wheeler, M. T., Mandic, S., Dewey, F., Fonda, H., Perez, M., et al. (2010). Addition of the electrocardiogram to the preparticipation examination of college athletes. Clinical Journal of Sports Medicine: Official Journal of the Canadian Academy of Sport Medicine, 20(2), 98–105.

    Article  Google Scholar 

  23. Corrado, D., Pelliccia, A., Heidbuchel, H., Sharma, S., Link, M., Basso, C., et al. (2010). Recommendations for interpretation of 12-lead electrocardiogram in the athlete. European Heart Journal, 31(2), 243–259.

    Article  PubMed  Google Scholar 

  24. Kumae, T. (2012). Assessment of training effects on autonomic modulation of the cardiovascular system in mature rats using power spectral analysis of heart rate variability. Environmental Health and Preventive Medicine, 17(5), 415–422.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Yang, K. C., Tseng, Y. T., & Nerbonne, J. M. (2012). Exercise training and PI3Kalpha-induced electrical remodeling is independent of cellular hypertrophy and Akt signaling. Journal of Molecular and Cellular Cardiology, 53(4), 532–541.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bacharova, L. (2007). Electrical and structural remodeling in left ventricular hypertrophy-a substrate for a decrease in QRS voltage? Annals of Noninvasive Electrocardiology, 12(3), 260–273.

    Article  PubMed  Google Scholar 

  27. Bacharova, L., Michalak, K., Kyselovic, J., & Klimas, J. (2005). Relation between QRS amplitude and left ventricular mass in the initial stage of exercise-induced left ventricular hypertrophy in rats. Clinical and Experimental Hypertension, 27(6), 533–541.

    Article  PubMed  Google Scholar 

  28. La Gerche, A., Burns, A. T., Mooney, D. J., Inder, W. J., Taylor, A. J., Bogaert, J., et al. (2012). Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. European Heart Journal, 33(8), 998–1006.

    Article  PubMed  Google Scholar 

  29. Sheikh, N., Papadakis, M., Carre, F., Kervio, G., Panoulas, V. F., Ghani, S., et al. (2013). Cardiac adaptation to exercise in adolescent athletes of African ethnicity: An emergent elite athletic population. British Journal of Sports Medicine, 47(9), 585–592.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the deanship of research in the University of Dammam for providing the grant of this research (Grant No. 8086).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubna Ibrahim Al-Asoom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Asoom, L.I., Al-Shaikh, B.A., Bamosa, A.O. et al. Comparison of Nigella sativa- and Exercise-Induced Models of Cardiac Hypertrophy: Structural and Electrophysiological Features. Cardiovasc Toxicol 14, 208–213 (2014). https://doi.org/10.1007/s12012-014-9244-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9244-4

Keywords

Navigation