Skip to main content
Log in

Low-Dose Trichloroethylene Alters Cytochrome P450-2C Subfamily Expression in the Developing Chick Heart

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Trichloroethylene (TCE) is an organic solvent and common environmental contaminant. TCE exposure is associated with heart defects in humans and animal models. Primary metabolism of TCE in adult rodent models is by specific hepatic cytochrome P450 enzymes (Lash et al. in Environ Health Perspect 108:177–200, 2000). As association of TCE exposure with cardiac defects is in exposed embryos prior to normal liver development, we investigated metabolism of TCE in the early embryo. Developing chick embryos were dosed in ovo with environmentally relevant doses of TCE (8 and 800 ppb) and RNA was extracted from cardiac and extra-cardiac tissue (whole embryo without heart). Real-time PCR showed upregulation of CYP2H1 transcripts in response to TCE exposure in the heart. No detectable cytochrome expression was found in extra-cardiac tissue. As seen previously, the dose response was non-monotonic and 8 ppb elicited stronger upregulation than 800 ppb. Immunostaining for CYP2C subfamily expression confirmed protein expression and showed localization in both myocardium and endothelium. TCE exposure increased protein expression in both tissues. These data demonstrate that the earliest embryonic expression of phase I detoxification enzymes is in the developing heart. Expression of these CYPs is likely to be relevant to the susceptibility of the developing heart to environmental teratogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. ATSDR. (2003). Agency for toxic substances and disease registry (ATSDR) toxicological profile for trichloroethylene (Update). 28 July 2003, pp. 1–2. Atlanta, GA: U.S. Department of Health and Human Services, U.S. Public Health Service.

  2. Bove, F., Shim, Y., & Zeitz, P. (2002). Drinking water contaminants and adverse pregnancy outcomes: A review. Environmental Health Perspectives, 110(Suppl 1), 61–74.

    PubMed  Google Scholar 

  3. Boyer, A. S., Finch, W. T., & Runyan, R. B. (2000). Trichloroethylene inhibits development of embryonic heart valve precursors in vitro. Toxicological Sciences: An Official Journal of the Society of Toxicology, 53(1), 109–117.

    Article  CAS  Google Scholar 

  4. Brzezinski, M. R., Boutelet-Bochan, H., Person, R. E., Fantel, A. G., & Juchau, M. R. (1999). Catalytic activity and quantitation of cytochrome P-450 2E1 in prenatal human brain. The Journal of Pharmacology and Experimental Therapeutics, 289(3), 1648–1653.

    PubMed  CAS  Google Scholar 

  5. Caldwell, P. T., Manziello, A., Howard, J., Palbykin, B., Runyan, R. B., & Selmin, O. (2010). Gene expression profiling in the fetal cardiac tissue after folate and low-dose trichloroethylene exposure. Birth Defects Research, Part A: Clinical and Molecular Teratology, 88(2), 111–127.

    Article  CAS  Google Scholar 

  6. Caldwell, P. T., Thorne, P. A., Johnson, P. D., Boitano, S., Runyan, R. B., & Selmin, O. (2008). Trichloroethylene disrupts cardiac gene expression and calcium homeostasis in rat myocytes. Toxicological Sciences: An Official Journal of the Society of Toxicology, 104(1), 135–143.

    Article  CAS  Google Scholar 

  7. Carpenter, S. P., Lasker, J. M., & Raucy, J. L. (1996). Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes. Molecular Pharmacology, 49(2), 260–268.

    PubMed  CAS  Google Scholar 

  8. Collier, J. M., Selmin, O., Johnson, P. D., & Runyan, R. B. (2003). Trichloroethylene effects on gene expression during cardiac development. Birth Defects Research, Part A: Clinical and Molecular Teratology, 67(7), 488–495.

    Article  CAS  Google Scholar 

  9. Drake, V. J., Koprowski, S. L., Hu, N., Smith, S. M., & Lough, J. (2006). Cardiogenic effects of trichloroethylene and trichloroacetic acid following exposure during heart specification of avian development. Toxicological Sciences: An Official Journal of the Society of Toxicology, 94(1), 153–162.

    Article  CAS  Google Scholar 

  10. Drake, V. J., Koprowski, S. L., Lough, J., Hu, N., & Smith, S. M. (2006). Trichloroethylene exposure during cardiac valvuloseptal morphogenesis alters cushion formation and cardiac hemodynamics in the avian embryo. Environmental Health Perspectives, 114(6), 842–847.

    Article  PubMed  CAS  Google Scholar 

  11. Dugard, P. H. (2000). Effects of trichloroethylene (TCE) on an in vitro chick atrioventricular canal culture. Toxicological Sciences: An Official Journal of the Society of Toxicology, 56(2), 437–438.

    Article  CAS  Google Scholar 

  12. Ensley, B. D. (1991). Biochemical diversity of trichloroethylene metabolism. Annual Review of Microbiology, 45, 283–299.

    Article  PubMed  CAS  Google Scholar 

  13. Gannon, M., Gil, D., & Rifkind, A. B. (2000). TCDD induces CYP1A4 and CYP1A5 in chick liver and kidney and only CYP1A4, an enzyme lacking arachidonic acid epoxygenase activity, in myocardium and vascular endothelium. Toxicology and Applied Pharmacology, 164(1), 24–37.

    Article  PubMed  CAS  Google Scholar 

  14. Goldberg, S. J., Lebowitz, M. D., Graver, E. J., & Hicks, S. (1990). An association of human congenital cardiac malformations and drinking water contaminants. Journal of the American College of Cardiology, 16(1), 155–164.

    Article  PubMed  CAS  Google Scholar 

  15. Groenendijk, B. C., Hierck, B. P., Vrolijk, J., Baiker, M., Pourquie, M. J., Gittenberger-De Groot, A. C., et al. (2005). Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo. Circulation Research, 96(12), 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  16. Hardin, B. D., Kelman, B. J., & Brent, R. L. (2005). Trichloroethylene and dichloroethylene: A critical review of teratogenicity. Birth Defects Research, Part A: Clinical and Molecular Teratology, 73(12), 931–955.

    Article  CAS  Google Scholar 

  17. Hogers, B., DeRuiter, M. C., Gittenberger-De Groot, A. C., & Poelmann, R. E. (1997). Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circulation Research, 80(4), 473–481.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson, P. D., Dawson, B. V., & Goldberg, S. J. (1998). Cardiac teratogenicity of trichloroethylene metabolites. Journal of the American College of Cardiology, 32(2), 540–545.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson, P. D., Goldberg, S. J., Mays, M. Z., & Dawson, B. V. (2003). Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat. Environmental Health Perspectives, 111(3), 289–292.

    Article  PubMed  CAS  Google Scholar 

  20. Jones, S. P., & Kennedy, S. W. (2009). Chicken embryo cardiomyocyte cultures—a new approach for studying effects of halogenated aromatic hydrocarbons in the avian heart. Toxicological Sciences: An Official Journal of the Society of Toxicology, 109(1), 66–74.

    Article  CAS  Google Scholar 

  21. Larson, J. L., & Bull, R. J. (1992). Species differences in the metabolism of trichloroethylene to the carcinogenic metabolites trichloroacetate and dichloroacetate. Toxicology and Applied Pharmacology, 115(2), 278–285.

    Article  PubMed  CAS  Google Scholar 

  22. Lash, L. H., Fisher, J. W., Lipscomb, J. C., & Parker, J. C. (2000). Metabolism of trichloroethylene. Environmental Health Perspectives, 108(Suppl 2), 177–200.

    Article  PubMed  CAS  Google Scholar 

  23. Loeber, C. P., Hendrix, M. J., Diez De Pinos, S., & Goldberg, S. J. (1988). Trichloroethylene: A cardiac teratogen in developing chick embryos. Pediatric Research, 24(6), 740–744.

    Article  PubMed  CAS  Google Scholar 

  24. Lumpkin, M. H., Bruckner, J. V., Campbell, J. L., Dallas, C. E., White, C. A., & Fisher, J. W. (2003). Plasma binding of trichloroacetic acid in mice, rats, and humans under cancer bioassay and environmental exposure conditions. Drug metabolism and Disposition: The Biological Fate of Chemicals, 31(10), 1203–1207.

    Article  Google Scholar 

  25. Makwana, O., King, N. M., Ahles, L., Selmin, O., Granzier, H., & Runyan, R. B. (2010). Exposure to low-dose trichloroethylene alters shear stress gene expression and function in the developing chick heart. Cardiovascular Toxicology, 10(2), 100–107.

    Article  PubMed  CAS  Google Scholar 

  26. Mattschoss, L. A., Hobbs, A. A., Steggles, A. W., May, B. K., & Elliott, W. H. (1986). Isolation and characterization of genomic clones for two chicken phenobarbital-inducible cytochrome P-450 genes. The Journal of Biological Chemistry, 261(20), 9438–9443.

    PubMed  CAS  Google Scholar 

  27. Miller, R. E., & Guengerich, F. P. (1982). Oxidation of trichloroethylene by liver microsomal cytochrome P-450: Evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Biochemistry, 21(5), 1090–1097.

    Article  PubMed  CAS  Google Scholar 

  28. Miller, R. E., & Guengerich, F. P. (1983). Metabolism of trichloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450. Cancer Research, 43(3), 1145–1152.

    PubMed  CAS  Google Scholar 

  29. Mishima, N., Hoffman, S., Hill, E. G., & Krug, E. L. (2006). Chick embryos exposed to trichloroethylene in an ex ovo culture model show selective defects in early endocardial cushion tissue formation. Birth Defects Research, Part A: Clinical and Molecular Teratology, 76(7), 517–527.

    Article  CAS  Google Scholar 

  30. Mizell, M., & Romig, E. S. (1997). The aquatic vertebrate embryo as a sentinel for toxins: Zebrafish embryo dechorionation and perivitelline space microinjection. International Journal of Developmental Biology, 41(2), 411–423.

    PubMed  CAS  Google Scholar 

  31. Otto, D. M. E., Henderson, C. J., Carrie, D., Davey, M., Gundersen, T. E., Blomhoff, R., et al. (2003). Identification of novel roles of the cytochrome p450 system in early embryogenesis: Effects on vasculogenesis and retinoic Acid homeostasis. Molecular and Cellular Biology, 23(17), 6103–6116.

    Article  PubMed  CAS  Google Scholar 

  32. Reijntjes, S., Gale, E., & Maden, M. (2004). Generating gradients of retinoic acid in the chick embryo: Cyp26C1 expression and a comparative analysis of the Cyp26 enzymes. Developmental Dynamics, 230(3), 509–517.

    Article  PubMed  CAS  Google Scholar 

  33. National Research Council. (2006). Assessing the human health risks of trichloroethylene: Key scientific issues (p. 425). Washington: The National Academies Press.

    Google Scholar 

  34. Rufer, E. S., Hacker, T. A., Flentke, G. R., Drake, V. J., Brody, M. J., Lough, J., et al. (2010). Altered cardiac function and ventricular septal defect in avian embryos exposed to low-dose trichloroethylene. Toxicological Sciences: An Official Journal of the Society of Toxicology, 113(2), 444–452.

    Article  CAS  Google Scholar 

  35. Selmin, O., Thorne, P. A., Caldwell, P. T., Johnson, P. D., & Runyan, R. B. (2005). Effects of trichloroethylene and its metabolite trichloroacetic acid on the expression of vimentin in the rat H9c2 cell line. Cell Biology and Toxicology, 21(2), 83–95.

    Article  PubMed  CAS  Google Scholar 

  36. Selmin, O., Thorne, P. A., Caldwell, P. T., & Taylor, M. (2008). Trichloroethylene and trichloroacetic acid regulate calcium signaling pathways in murine embryonal carcinoma cells p19. Cardiovascular Toxicology, 8(2), 47–56.

    Article  PubMed  CAS  Google Scholar 

  37. Templin, M. V., Stevens, D. K., Stenner, R. D., Bonate, P. L., Tuman, D., & Bull, R. J. (1995). Factors affecting species differences in the kinetics of metabolites of trichloroethylene. Journal of Toxicology and Environmental Health, 44(4), 435–447.

    Article  PubMed  CAS  Google Scholar 

  38. Thum, T., & Borlak, J. (2000). Gene expression in distinct regions of the heart. Lancet, 355(9208), 979–983.

    Article  PubMed  CAS  Google Scholar 

  39. Yanai, M., Tatsumi, N., Endo, F., & Yokouchi, Y. (2005). Analysis of gene expression patterns in the developing chick liver. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 233(3), 1116–1122.

    Article  CAS  Google Scholar 

  40. Yauck, J. S., Malloy, M. E., Blair, K., Simpson, P. M., & McCarver, D. G. (2004). Proximity of residence to trichloroethylene-emitting sites and increased risk of offspring congenital heart defects among older women. Birth Defects Research, Part A: Clinical and Molecular Teratology, 70(10), 808–814.

    Article  CAS  Google Scholar 

  41. Yu, D. (2007). Case studies in environmental medicine: trichloroethylene toxicity. http://www.atsdr.cdc.gov/csem.

Download references

Acknowledgments

We would like to thank Dr. André L. Tavares for his guidance and support. This work was supported by the American Heart Association [0810020Z to O.M.] and the National Institutes of Health [HL82851 to R.B.R. and ES00694 to the Southwest Environmental Health Sciences Center (SWEHSC)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond B. Runyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makwana, O., Ahles, L., Lencinas, A. et al. Low-Dose Trichloroethylene Alters Cytochrome P450-2C Subfamily Expression in the Developing Chick Heart. Cardiovasc Toxicol 13, 77–84 (2013). https://doi.org/10.1007/s12012-012-9180-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-012-9180-0

Keywords

Navigation