Skip to main content

Advertisement

Log in

Integrated Backscatter for the In Vivo Quantification of Supraphysiological Vitamin D3-Induced Cardiovascular Calcifications in Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiovascular calcifications are frequently found in the aging population and are independent predictors of future cardiovascular events. Integrated backscatter (IB) of ultrasound reflectivity can easily quantify calcifications. For this purpose, 30 male Wistar rats received 25,000 IU/kg/day of vitamin D3 (group 1, n = 8), 18,800 IU/kg/day (group 2, n = 8), or injections with the vehicle only (group 3, n = 14), for 10 weeks. Echocardiographic calibrated IB (cIB) was measured and calculated at baseline and after 10 weeks, followed by ex vivo micro-CT and histopathology of the aortic valve, ascending aorta, and myocardium. After 10 weeks, the mean cIB value of the aortic valve was significantly higher for vitamin D3-dosed animals compared to controls. The mean cIB value of the ascending aorta and the myocardium was also significantly higher in group 1 compared to group 3. In vivo IB results were confirmed by ex vivo micro-CT and histopathology. In conclusion, IB is a non-ionizing, feasible, and reproducible tool to quantify cardiovascular calcifications in an in vivo rat model. The integration of IB in the standard echocardiographic examination for the quantification of cardiovascular calcifications could be useful for serial evaluation of treatment efficacy and for prognosis assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A:

Diastolic peak late velocity

AV:

Aortic valve

BSA:

Body surface area

cIB:

Calibrated integrated backscatter

Dec Time:

Deceleration time

E:

Diastolic peak early velocity

FAC:

Fractional area change

IB:

Integrated backscatter

Ind:

Indexed

LA:

Long axis

LV:

Left ventricle

LVAd:

LV cross-sectional area at end diastole

LVAs:

LV cross-sectional area at end systole

LVOT:

Left venticular outflow tract

PG:

Pressure gradient

ROI(s):

Region(s) of interest

ROIM :

ROI myocardium

ROIAscA :

ROI ascending aorta

ROIAVGLOB :

ROI aortic valve, global

ROIAVLA :

ROI aortic valve, long axis

ROIAVSA :

ROI aortic valve, short axis

ROIAVTOT :

ROI aortic valve, total

SA:

Short axis

TVI:

Tissue Velocity Image

VDR:

Vitamin D receptor

References

  1. Stewart, B. F., Siscovick, D., Lind, B. K., Gardin, J. M., Gottdiener, J. S., Smith, V. E., et al. (1997). Clinical factors associated with calcific aortic valve disease. Cardiovascular health study. Journal of the American College of Cardiology, 29, 630–634.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenhek, R. (2005). Statins for aortic stenosis. New England Journal of Medicine, 352, 2441–2443.

    Article  PubMed  CAS  Google Scholar 

  3. Taylor, A. J., Burke, A. P., O’Malley, P. G., Farb, A., Malcom, G. T., Smialek, J., et al. (2000). A comparison of the Framingham risk index, coronary artery calcification, and culprit plaque morphology in sudden cardiac death. Circulation, 101, 1243–1248.

    PubMed  CAS  Google Scholar 

  4. Kawasaki, M., Takatsu, H., Noda, T., Ito, Y., Kunishima, A., Arai, M., et al. (2001). Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: comparison between histology and integrated backscatter images. Journal of the American College of Cardiology, 38, 486–492.

    Article  PubMed  CAS  Google Scholar 

  5. Donnelly, K. B. (2008). Cardiac valvular pathology: comparative pathology and animal models of acquired cardiac valvular diseases. Toxicologic Pathology, 36, 204–217.

    Article  PubMed  CAS  Google Scholar 

  6. Zittermann, A., & Koerfer, R. (2008). Protective and toxic effects of vitamin D on vascular calcification: clinical implications. Molecular Aspects of Medicine, 29, 423–432.

    Article  PubMed  CAS  Google Scholar 

  7. Zittermann, A., Schleithoff, S. S., & Koerfer, R. (2007). Vitamin D and vascular calcification. Current Opinion in Lipidology, 18, 41–46.

    Article  PubMed  CAS  Google Scholar 

  8. Price, P. A., June, H. H., Buckley, J. R., & Williamson, M. K. (2001). Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1610–1616.

    Article  PubMed  CAS  Google Scholar 

  9. Cardus, A., Panizo, S., Parisi, E., Fernandez, E., & Valdivielso, J. M. (2007). Differential effects of vitamin D analogs on vascular calcification. Journal of Bone and Mineral Research, 22, 860–866.

    Article  PubMed  CAS  Google Scholar 

  10. Price, P. A., Faus, S. A., & Williamson, M. K. (2000). Warfarin-induced artery calcification is accelerated by growth and vitamin D. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 317–327.

    Article  PubMed  CAS  Google Scholar 

  11. Droogmans, S., Franken, P. R., Garbar, C., Weytjens, C., Cosyns, B., Lahoutte, T., et al. (2007). In vivo model of drug-induced valvular heart disease in rats: pergolide-induced valvular heart disease demonstrated with echocardiography and correlation with pathology. European Heart Journal, 28, 2156–2162.

    Article  PubMed  Google Scholar 

  12. Weytjens, C., Cosyns, B., D’Hooge, J., Gallez, C., Droogmans, S., Lahoute, T., et al. (2006). Doppler myocardial imaging in adult male rats: reference values and reproducibility of velocity and deformation parameters. European Journal of Echocardiography, 7, 411–417.

    Article  PubMed  Google Scholar 

  13. Droogmans, S., Roosens, B., Cosyns, B., Degaillier, C., Hernot, S., Weytjens, C., et al. (2009). Dose dependency and reversibility of serotonin-induced valvular heart disease in rats. Cardiovascular Toxicology, 9, 134–141.

    Article  PubMed  CAS  Google Scholar 

  14. Ngo, D. T., Stafford, I., Kelly, D. J., Sverdlov, A. L., Wuttke, R. D., Weedon, H., et al. (2008). Vitamin D(2) supplementation induces the development of aortic stenosis in rabbits: interactions with endothelial function and thioredoxin-interacting protein. European Journal of Pharmacology, 590, 290–296.

    Article  PubMed  CAS  Google Scholar 

  15. Nightingale, A. K., & Horowitz, J. D. (2005). Aortic sclerosis: not an innocent murmur but a marker of increased cardiovascular risk. Heart, 91, 1389–1393.

    Article  PubMed  CAS  Google Scholar 

  16. Di Bello, V., Giorgi, D., Viacava, P., Enrica, T., Nardi, C., Palagi, C., et al. (2004). Severe aortic stenosis and myocardial function: diagnostic and prognostic usefulness of ultrasonic integrated backscatter analysis. Circulation, 110, 849–855.

    Article  PubMed  Google Scholar 

  17. McCollough, C. H., Ulzheimer, S., Halliburton, S. S., Shanneik, K., White, R. D., & Kalender, W. A. (2007). Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT. Radiology, 243, 527–538.

    Article  PubMed  Google Scholar 

  18. Callister, T. Q., Cooil, B., Raya, S. P., Lippolis, N. J., Russo, D. J., & Raggi, P. (1998). Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology, 208, 807–814.

    PubMed  CAS  Google Scholar 

  19. Shavelle, D. M., Budoff, M. J., Buljubasic, N., Wu, A. H., Takasu, J., Rosales, J., et al. (2003). Usefulness of aortic valve calcium scores by electron beam computed tomography as a marker for aortic stenosis. American Journal of Cardiology, 92, 349–353.

    Article  PubMed  CAS  Google Scholar 

  20. Messika-Zeitoun, D., Aubry, M. C., Detaint, D., Bielak, L. F., Peyser, P. A., Sheedy, P. F., et al. (2004). Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography. Circulation, 110, 356–362.

    Article  PubMed  Google Scholar 

  21. Postnov, A. A., Vinogradov, A. V., Van Dyck, D., Saveliev, S. V., & De Clerck, N. M. (2003). Quantitative analysis of bone mineral content by X-ray microtomography. Physiological Measurement, 24, 165–178.

    Article  PubMed  CAS  Google Scholar 

  22. Ogle, M. F., Kelly, S. J., Bianco, R. W., & Levy, R. J. (2003). Calcification resistance with aluminum-ethanol treated porcine aortic valve bioprostheses in juvenile sheep. Annals of Thoracic Surgery, 75, 1267–1273.

    Article  PubMed  Google Scholar 

  23. Persy, V., Postnov, A., Neven, E., Dams, G., De Broe, M., D’Haese, P., et al. (2006). High-resolution X-ray microtomography is a sensitive method to detect vascular calcification in living rats with chronic renal failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2110–2116.

    Article  PubMed  CAS  Google Scholar 

  24. van den Broek, F. A., Beems, R. B., van Tintelen, G., Lemmens, A. G., Fielmich-Bouwman, A. X., & Beynen, A. C. (1997). Co-variance of chemically and histologically analysed severity of dystrophic cardiac calcification in mice. Laboratory Animals, 31, 74–80.

    Article  PubMed  Google Scholar 

  25. Gaillard, V., Jover, B., Casellas, D., Cordaillat, M., Atkinson, J., & Lartaud, I. (2008). Renal function and structure in a rat model of arterial calcification and increased pulse pressure. Am J Physiol Renal Physiol, 295, F1222–F1229.

    Article  PubMed  CAS  Google Scholar 

  26. Lartaud-Idjouadiene, I., Lompre, A. M., Kieffer, P., Colas, T., & Atkinson, J. (1999). Cardiac consequences of prolonged exposure to an isolated increase in aortic stiffness. Hypertension, 34, 63–69.

    PubMed  CAS  Google Scholar 

  27. Norman, P. E., & Powell, J. T. (2005). Vitamin D, shedding light on the development of disease in peripheral arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 39–46.

    PubMed  CAS  Google Scholar 

  28. Wong, C. Y., O’Moore-Sullivan, T., Leano, R., Byrne, N., Beller, E., & Marwick, T. H. (2004). Alterations of left ventricular myocardial characteristics associated with obesity. Circulation, 110, 3081–3087.

    Article  PubMed  Google Scholar 

  29. Khan, Z., Boughner, D. R., & Lacefield, J. C. (2008). Anisotropy of high-frequency integrated backscatter from aortic valve cusps. Ultrasound in Medicine and Biology, 34, 1504–1512.

    Article  PubMed  Google Scholar 

  30. Ngo, D. T., Wuttke, R. D., Turner, S., Marwick, T. H., & Horowitz, J. D. (2004). Quantitative assessment of aortic sclerosis using ultrasonic backscatter. Journal of the American Society of Echocardiography, 17, 1123–1130.

    Article  PubMed  Google Scholar 

  31. Ortlepp, J. R., Hoffmann, R., Ohme, F., Lauscher, J., Bleckmann, F., & Hanrath, P. (2001). The vitamin D receptor genotype predisposes to the development of calcific aortic valve stenosis. Heart, 85, 635–638.

    Article  PubMed  CAS  Google Scholar 

  32. Drolet, M. C., Arsenault, M., & Couet, J. (2003). Experimental aortic valve stenosis in rabbits. Journal of the American College of Cardiology, 41, 1211–1217.

    Article  PubMed  Google Scholar 

  33. Drolet, M. C., Couet, J., & Arsenault, M. (2008). Development of aortic valve sclerosis or stenosis in rabbits: role of cholesterol and calcium. Journal of Heart Valve Disease, 17, 381–387.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported with a grant from AstraZeneca and Pfizer, Belgium. Bram Roosens has received a scholarship from the OZR, Vrije Universiteit Brussel (2008–2009). Tony Lahoutte is a Senior Clinical Investigator of the Research Foundation—Flanders (Belgium) (FWO). The authors wish to thank Mrs. Cindy Peleman and Mr. Patrick Roncarati for their outstanding technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram Roosens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roosens, B., Droogmans, S., Hostens, J. et al. Integrated Backscatter for the In Vivo Quantification of Supraphysiological Vitamin D3-Induced Cardiovascular Calcifications in Rats. Cardiovasc Toxicol 11, 244–252 (2011). https://doi.org/10.1007/s12012-011-9118-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9118-y

Keywords

Navigation