Skip to main content

Advertisement

Log in

Merits of Non-Invasive Rat Models of Left Ventricular Heart Failure

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Heart failure (HF) is characterized as a limitation to cardiac output that prevents the heart from supplying tissues with adequate oxygen and predisposes individuals to pulmonary edema. Impaired cardiac function is secondary to either decreased contractility reducing ejection (systolic failure), diminished ventricular compliance preventing filling (diastolic failure), or both. To study HF etiology, many different techniques have been developed to elicit this condition in experimental animals, with varying degrees of success. Among rats, surgically induced HF models are the most prevalent, but they bear several shortcomings, including high mortality rates and limited recapitulation of the pathophysiology, etiology, and progression of human HF. Alternatively, a number of non-invasive HF induction methods avoid many of these pitfalls, and their merits in technical simplicity, reliability, survivability, and comparability to the pathophysiologic and pathogenic characteristics of HF are reviewed herein. In particular, this review focuses on the primary pathogenic mechanisms common to genetic strains (spontaneously hypertensive and spontaneously hypertensive heart failure), pharmacological models of toxic cardiomyopathy (doxorubicin and isoproterenol), and dietary salt models, all of which have been shown to induce left ventricular HF in the rat. Additional non-invasive techniques that may potentially enable the development of new HF models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

ANG II:

Angiotensin II

βAR:

Beta adrenergic receptor

CO:

Cardiac output

DM:

Diabetes mellitus

DOX:

Doxorubicin

dP/dt max :

Peak rate of increase in LV pressure

dP/dt min :

Peak rate of decrease in LV pressure

DOCA:

Deoxycorticosterone acetate

DS:

Dahl salt sensitive

E/A:

Ratio of early-to-late inflow velocities

EF:

Ejection fraction

ESV:

End-systolic volume

FS:

Fractional shortening

HF:

Heart failure

HR:

Heart rate

i.v. :

Intravenous

ISO:

Isoproterenol

LAD:

Left anterior descending coronary artery

LV:

Left ventricular

LVP:

LV pressure

LVEDP:

LV end-diastolic pressure

LVESP:

LV end-systolic pressure

LVOT:

LV outflow tract

MAP:

Mean arterial pressure

MHC:

Myosin heavy chain

MI:

Myocardial infarction

PO:

Pressure overload

PTU:

Propylthiouracil

s.c. :

Subcutaneous

SD:

Sprauge Dawley

SERCA:

Sarcoplasmic reticulum Ca2+ ATPase pump

SERCA2a:

SERCA type “2”, isoform ‘a’

SH:

Spontaneously hypertensive

SHHF:

Spontaneously hypertensive heart failure

SHR:

Spontaneously hypertensive rat

SV:

Stroke volume

T3 :

Triiodothyronine

T4 :

Thyroxine

TAC:

Transverse aortic constriction

TNF-α:

Tumor necrosis factor-α

UPS:

Ubiquitin–proteasome system

VO:

Volume overload

References

  1. DeFrances, C. J. & Podgornik, M. N. (2006). 2004 National hospital discharge survey. In Advance data. United States, pp. 1–19.

  2. Minino, A. M., Heron, M. P., & Smith, B. L. (2006). Deaths: preliminary data for 2004. National vital statistics reports: From the centers for disease control and prevention, National center for health statistics. National Vital Statistics System, 54(19), 1–49.

    Google Scholar 

  3. Rosamond, W., et al. (2008). Heart disease and stroke statistics—2008 update: A report from the American heart association statistics committee and stroke statistics subcommittee. Circulation, 117(4), e25–e146.

    PubMed  Google Scholar 

  4. Coronel, R., de Groot, J. R., & van Lieshout, J. J. (2001). Defining heart failure. Cardiovascular Research, 50(3), 419–422.

    PubMed  CAS  Google Scholar 

  5. Lloyd-Jones, D., et al. (2009). Heart disease and stroke statistics—2009 update: A report from the American heart association statistics committee and stroke statistics subcommittee. Circulation, 119(3), e21–e181.

    PubMed  Google Scholar 

  6. Goff, D. C., Jr., et al. (2000). Congestive heart failure in the United States: Is there more than meets the I(CD code)? The corpus christi heart project. In Archives of internal medicine, USA, pp. 197–202.

  7. Balakumar, P., Singh, A. P., & Singh, M. (2007). Rodent models of heart failure. Journal of Pharmacological and Toxicological Methods, 56(1), 1–10.

    PubMed  CAS  Google Scholar 

  8. Francis, G. S. (2001). Pathophysiology of chronic heart failure. American Journal of Medicine, 110(Suppl 7A), 37S–46S.

    Google Scholar 

  9. Braunwald, E., Ross, J. & Sonnenblick, E. (1976). Mechanisms of contraction of the normal and failing heart, vol. 2, p. 417. Boston: Little, Brown and Company.

  10. Mann, D. L., & Bristow, M. R. (2005). Mechanisms and models in heart failure: The biomechanical model and beyond. Circulation, 111(21), 2837–2849.

    PubMed  Google Scholar 

  11. Diwan, A. & Dorn, G. W. II (2007). Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda), 22, 56–64.

  12. Frey, N. & Olson, E. N. (2003). Cardiac hypertrophy: The good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.

    Google Scholar 

  13. Schoen, F. J. (2005). In V. Kumar, A. K. Abbas, & N. Fausto (Eds.), The heart, in robbins and cotran pathologic basis of disease. Elsevier Saunders: Philadelphia, PA, pp. 555–618.

  14. Kang, Y. J. (2006). Cardiac hypertrophy: A risk factor for QT-prolongation and cardiac sudden death. Toxicologic Pathology, 34(1), 58–66.

    PubMed  CAS  Google Scholar 

  15. Funada, J., et al. (2009). Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS One, 4(10), p. e7533.

    Google Scholar 

  16. Zile, M. R., et al. (2010). Mode of death in patients with heart failure and a preserved ejection fraction: Results from the irbesartan in heart failure with preserved ejection fraction study (I-Preserve) trial. Circulation, 121(12), 1393–1405.

    PubMed  Google Scholar 

  17. Jackson, G., et al. (2000). ABC of heart failure. Pathophysiology. BMJ, 320(7228), 167–170.

    PubMed  CAS  Google Scholar 

  18. Tonnessen, T., et al. (1997). Increased cardiac expression of endothelin-1 mRNA in ischemic heart failure in rats. Cardiovascular Research, 33(3), 601–610.

    PubMed  CAS  Google Scholar 

  19. Sjaastad, I., et al. (2000). Echocardiographic criteria for detection of postinfarction congestive heart failure in rats. Journal of Applied Physiology, 89(4), 1445–1454.

    PubMed  CAS  Google Scholar 

  20. Morgan, E. E., et al. (2004). Validation of echocardiographic methods for assessing left ventricular dysfunction in rats with myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 287(5), H2049–H2053.

    PubMed  CAS  Google Scholar 

  21. Holt, E., et al. (1998). Mechanisms of cardiomyocyte dysfunction in heart failure following myocardial infarction in rats. Journal of Molecular and Cellular Cardiology, 30(8), 1581–1593.

    PubMed  CAS  Google Scholar 

  22. Wake, R., et al. (2005). Beneficial effect of candesartan on rat diastolic heart failure. Journal of Pharmacological Science, 98(4), 372–379.

    CAS  Google Scholar 

  23. Itter, G., et al. (2004). A model of chronic heart failure in spontaneous hypertensive rats (SHR). Laboratory Animals, 38(2), 138–148.

    PubMed  CAS  Google Scholar 

  24. Pocock, S. J., et al. (2006). Predictors of mortality and morbidity in patients with chronic heart failure. European Heart Journal, 27(1), 65–75.

    PubMed  Google Scholar 

  25. Janssen, B. J., et al. (2004). Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology. Heart and Circulatory Physiology, 287(4), H1618–H1624.

    PubMed  CAS  Google Scholar 

  26. Pfeffer, M. A., et al. (1979). Myocardial infarct size and ventricular function in rats. Circulation Research, 44(4), 503–512.

    PubMed  CAS  Google Scholar 

  27. Opitz, C. F., et al. (1995). Arrhythmias and death after coronary artery occlusion in the rat. Continuous telemetric ECG monitoring in conscious, untethered rats. Circulation, 92(2), 253–261.

    PubMed  CAS  Google Scholar 

  28. Lefebvre, F., et al. (2006). Modification of the pulmonary renin-angiotensin system and lung structural remodelling in congestive heart failure. Clinical Science (London), 111(3), pp. 217–224.

    Google Scholar 

  29. Mulder, P., et al. (1997). Role of endogenous endothelin in chronic heart failure: Effect of long-term treatment with an endothelin antagonist on survival, hemodynamics, and cardiac remodeling. Circulation, 96(6), 1976–1982.

    PubMed  CAS  Google Scholar 

  30. Samsamshariat, S. A., Samsamshariat, Z. A., & Movahed, M. R. (2005). A novel method for safe and accurate left anterior descending coronary artery ligation for research in rats. Cardiovascular Revascularization Medicine, 6(3), 121–123.

    PubMed  Google Scholar 

  31. Molina, E. J., et al. (2008). Novel experimental model of pressure overload hypertrophy in rats. Journal of Surgical Research.

  32. Rockman, H. A., et al. (1991). Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proceedings of National Academic Science of USA, 88(18), 8277–8281.

    CAS  Google Scholar 

  33. Suckau, L., et al. (2009). Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation, 119(9), 1241–1252.

    PubMed  CAS  Google Scholar 

  34. Weinberg, E. O., et al. (1994). Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation, 90(3), 1410–1422.

    PubMed  CAS  Google Scholar 

  35. Gupta, D., et al. (2008). Adenoviral beta-adrenergic receptor kinase inhibitor gene transfer improves exercise capacity, cardiac contractility, and systemic inflammation in a model of pressure overload hypertrophy. Cardiovascular Drugs and Therapy, 22(5), 373–381.

    PubMed  CAS  Google Scholar 

  36. Schwarzer, M., et al. (2009). The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo. Basic Research in Cardiology, 104(5), 547–557.

    PubMed  CAS  Google Scholar 

  37. Cantor, E. J., et al. (2005). A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. Journal of Molecular and Cellular Cardiology, 38(5), 777–786.

    PubMed  CAS  Google Scholar 

  38. Rivera, D. M., & Lowes, B. D. (2005). Molecular remodeling in the failing human heart. Current Heart Failure Reports, 2(1), 5–9.

    PubMed  CAS  Google Scholar 

  39. del Monte, F., et al. (2001). Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2 +)-ATPase in a rat model of heart failure. Circulation, 104(12), 1424–1429.

    PubMed  CAS  Google Scholar 

  40. Gianni, D., et al. (2005). SERCA2a in heart failure: Role and therapeutic prospects. Journal of Bioenergetics and Biomembranes, 37(6), 375–380.

    PubMed  CAS  Google Scholar 

  41. Tsukioka, T., et al. (2007). Local and systemic impacts of pleural oxygen exposure in thoracotomy. BioFactors, 30(2), 117–128.

    PubMed  CAS  Google Scholar 

  42. Buvanendran, A., et al. (2004). Characterization of a new animal model for evaluation of persistent postthoracotomy pain. Anesthesia and Analgesia, 99(5), 1453–1460; table of contents.

    Google Scholar 

  43. del Monte, F., et al. (2002). Novel technique of aortic banding followed by gene transfer during hypertrophy and heart failure. Physiol Genomics, 9(1), 49–56.

    PubMed  CAS  Google Scholar 

  44. Lebeche, D., et al. (2004). In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis. Circulation, 110(22), 3435–3443.

    PubMed  CAS  Google Scholar 

  45. Hu, P., et al. (2003). Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. American Journal of Physiology. Heart and Circulatory Physiology, 285(3), H1261–H1269.

    PubMed  CAS  Google Scholar 

  46. Stansfield, W. E., et al. (2007). Characterization of a model to independently study regression of ventricular hypertrophy. Journal of Surgical Research, 142(2), 387–393.

    PubMed  Google Scholar 

  47. Pawlush, D. G., et al. (1993). Echocardiographic evaluation of size, function, and mass of normal and hypertrophied rat ventricles. Journal of Applied Physiology, 74(5), 2598–2605.

    PubMed  CAS  Google Scholar 

  48. Kobayashi, S., et al. (1996). Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation, 94(12), 3362–3368.

    PubMed  CAS  Google Scholar 

  49. Shah, K. B., et al. (2009). The cardioprotective effects of fish oil during pressure overload are blocked by high fat intake: Role of cardiac phospholipid remodeling. Hypertension, 54(3), 605–611.

    PubMed  CAS  Google Scholar 

  50. Linz, W., et al. (1996). ACE inhibition decreases postoperative mortality in rats with left ventricular hypertrophy and myocardial infarction. Clinical and Experimental Hypertension, 18(5), 691–712.

    PubMed  CAS  Google Scholar 

  51. Luo, J. D., et al. (1999). Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clinical and Experimental Pharmacology and Physiology, 26(11), 903–908.

    PubMed  CAS  Google Scholar 

  52. Woodiwiss, A. J., et al. (2001). Reduction in myocardial collagen cross-linking parallels left ventricular dilatation in rat models of systolic chamber dysfunction. Circulation, 103(1), 155–160.

    PubMed  CAS  Google Scholar 

  53. Sethi, R., et al. (2007). Dependence of changes in beta-adrenoceptor signal transduction on type and stage of cardiac hypertrophy. Journal of Applied Physiology, 102(3), 978–984.

    PubMed  CAS  Google Scholar 

  54. Monnet, E., & Orton, E. C. (1999). A canine model of heart failure by intracoronary adriamycin injection: Hemodynamic and energetic results. Journal of Cardiac Failure, 5(3), 255–264.

    PubMed  CAS  Google Scholar 

  55. Wang, X., et al. (2003). Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. Journal of Applied Physiology, 94(2), 752–763.

    PubMed  CAS  Google Scholar 

  56. Brower, G. L., & Janicki, J. S. (2001). Contribution of ventricular remodeling to pathogenesis of heart failure in rats. American Journal of Physiology. Heart and Circulatory Physiology, 280(2), H674–H683.

    PubMed  CAS  Google Scholar 

  57. Janicki, J. S., et al. (2006). Cardiac mast cell regulation of matrix metalloproteinase-related ventricular remodeling in chronic pressure or volume overload. Cardiovascular Research, 69(3), 657–665.

    PubMed  CAS  Google Scholar 

  58. Gardner, J. D., Brower, G. L., & Janicki, J. S. (2002). Gender differences in cardiac remodeling secondary to chronic volume overload. Journal of Cardiac Failure, 8(2), 101–107.

    PubMed  Google Scholar 

  59. Brower, G. L., Henegar, J. R. & Janicki, J. S. (1996). Temporal evaluation of left ventricular remodeling and function in rats with chronic volume overload. American Journal of Physiology. Heart and Circulatory Physiology, 271(5 Pt 2), pp. H2071–H2078.

    Google Scholar 

  60. Moreno, J., et al. (2005). Effect of remodelling, stretch and ischaemia on ventricular fibrillation frequency and dynamics in a heart failure model. Cardiovascular Research, 65(1), 158–166.

    PubMed  CAS  Google Scholar 

  61. Hanna, N., et al. (2004). Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovascular Research, 63(2), 236–244.

    PubMed  CAS  Google Scholar 

  62. Cardin, S., et al. (2003). Evolution of the atrial fibrillation substrate in experimental congestive heart failure: Angiotensin-dependent and -independent pathways. Cardiovascular Research, 60(2), 315–325.

    PubMed  CAS  Google Scholar 

  63. Takagaki, M., et al. (2002). Induction and maintenance of an experimental model of severe cardiomyopathy with a novel protocol of rapid ventricular pacing. Journal of Thoracic and Cardiovascular Surgery, 123(3), 544–549.

    PubMed  Google Scholar 

  64. Monnet, E., & Chachques, J. C. (2005). Animal models of heart failure: What is new? Annals of Thoracic Surgery, 79(4), 1445–1453.

    PubMed  Google Scholar 

  65. Chekanov, V. S., et al. (2000). Effects of electrical stimulation postcardiomyoplasty in a model of chronic heart failure: Hemodynamic results after daily 12-hour cessation versus a nonstop regimen. Pacing and Clinical Electrophysiology, 23(7), 1094–1102.

    PubMed  CAS  Google Scholar 

  66. Hasenfuss, G. (1998). Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovascular Research, 39(1), 60–76.

    PubMed  CAS  Google Scholar 

  67. Maass, A. H., et al. (2004). Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T. Circulation, 110(15), 2102–2109.

    PubMed  CAS  Google Scholar 

  68. van Rooij, E., et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.

    PubMed  Google Scholar 

  69. de Resende, M. M., Kriegel, A. J., & Greene, A. S. (2006). Combined effects of low-dose spironolactone and captopril therapy in a rat model of genetic hypertrophic cardiomyopathy. Journal of Cardiovascular Pharmacology, 48(6), 265–273.

    PubMed  Google Scholar 

  70. Muller, D. N., Derer, W., & Dechend, R. (2008). Aliskiren—Mode of action and preclinical data. Journal of Molecular Medicine, 86(6), 659–662.

    PubMed  Google Scholar 

  71. Wichers, L. B., et al. (2004). Effects of instilled combustion-derived particles in spontaneously hypertensive rats. Part I: Cardiovascular responses. Inhalation Toxicology, 16(6–7), 391–405.

    PubMed  CAS  Google Scholar 

  72. Calhoun, D. A., et al. (1994). Diurnal blood pressure variation and dietary salt in spontaneously hypertensive rats. Hypertension, 24(1), 1–7.

    PubMed  CAS  Google Scholar 

  73. El-Mas, M. M., & Abdel-Rahman, A. A. (2005). Longitudinal studies on the effect of hypertension on circadian hemodynamic and autonomic rhythms in telemetered rats. Life Science, 76(8), 901–915.

    CAS  Google Scholar 

  74. Bing, O. H., et al. (1995). The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. Journal of Molecular and Cellular Cardiology, 27(1), 383–396.

    PubMed  CAS  Google Scholar 

  75. Boluyt, M. O., Bing, O. H. & Lakatta, E. G. (1995). The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. European Heart Journal, 16(Suppl N), pp. 19–30.

    Google Scholar 

  76. Badenhorst, D., et al. (2003). Beta-adrenergic activation initiates chamber dilatation in concentric hypertrophy. Hypertension, 41(3), 499–504.

    PubMed  CAS  Google Scholar 

  77. Kuoppala, A., et al. (2003). Expression of bradykinin receptors in the left ventricles of rats with pressure overload hypertrophy and heart failure. Journal of Hypertension, 21(9), 1729–1736.

    PubMed  CAS  Google Scholar 

  78. Koletsky, S. (1975). Pathologic findings and laboratory data in a new strain of obese hypertensive rats. American Journal of Pathology, 80(1), 129–142.

    PubMed  CAS  Google Scholar 

  79. McCune, S., Baker, P. & Stills, H. Jr. (1990). SHHF/Mcc-cp rat: Model of obesity, non-insulin-dependent diabetes, and congestive heart failure. ILAR (Institute for Laboratory Animal Research) Journal, 32.

  80. Muders, F., & Elsner, D. (2000). Animal models of chronic heart failure. Pharmacological Research, 41(6), 605–612.

    PubMed  CAS  Google Scholar 

  81. Roncalli, J., et al. (2007). NMR and cDNA array analysis prior to heart failure reveals an increase of unsaturated lipids, a glutamine/glutamate ratio decrease and a specific transcriptome adaptation in obese rat heart. Journal of Molecular and Cellular Cardiology, 42(3), 526–539.

    PubMed  CAS  Google Scholar 

  82. Mark, A. L., et al. (2003). A leptin-sympathetic-leptin feedback loop: Potential implications for regulation of arterial pressure and body fat. Acta Physiologica Scandinavica, 177(3), 345–349.

    PubMed  CAS  Google Scholar 

  83. Radin, M. J., et al. (2003). Increased salt sensitivity secondary to leptin resistance in SHHF rats is mediated by endothelin. Molecular and Cellular Biochemistry, 242(1–2), 57–63.

    PubMed  CAS  Google Scholar 

  84. Jackson, E. K., et al. (2001). A(1) receptor blockade induces natriuresis with a favorable renal hemodynamic profile in SHHF/Mcc-fa(cp) rats chronically treated with salt and furosemide. Journal of Pharmacology and Experimental Therapeutics, 299(3), 978–987.

    PubMed  CAS  Google Scholar 

  85. McCune, S. A., et al. (1995). SHHF/Mcc-facp rat model: effects of gender and genotype on age of expression of metabolic complications and congestive heart failure and on response to drug therapy. In E. Shafir (Ed.), Lessons from animal diabetes V. Smith-Gordon: London, pp. 255–270.

  86. Emter, C. A., et al. (2005). Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats. American Journal of Physiology. Heart and Circulatory Physiology, 289(5), H2030–H2038.

    PubMed  CAS  Google Scholar 

  87. Abe, Y., et al. (2007). Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. American Journal of Physiology. Heart and Circulatory Physiology, 292(5), H2387–H2396.

    PubMed  CAS  Google Scholar 

  88. Bienertova-Vasku, J. A., et al. (2009). Association between variants in the genes for leptin, leptin receptor, and proopiomelanocortin with chronic heart failure in the Czech population. Heart and Vessels, 24(2), 131–137.

    PubMed  Google Scholar 

  89. Haas, G. J., et al. (1995). Echocardiographic characterization of left ventricular adaptation in a genetically determined heart failure rat model. American Heart Journal, 130(4), 806–811.

    PubMed  CAS  Google Scholar 

  90. Carll, A. P., et al. (2010). Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy. Inhalation Toxicology, 22(5), 355–368.

    PubMed  CAS  Google Scholar 

  91. Carll, A. P. (2010). Unpublished data.

  92. Schlenker, E. H., Kost, C. K., Jr., & Likness, M. M. (2004). Effects of long-term captopril and l-arginine treatment on ventilation and blood pressure in obese male SHHF rats. Journal of Applied Physiology, 97(3), 1032–1039.

    PubMed  CAS  Google Scholar 

  93. Poornima, I., et al. (2008). Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circulation. Heart failure, 1(3), 153–160.

    PubMed  CAS  Google Scholar 

  94. Peterson, J. T., et al. (2001). Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation, 103(18), 2303–2309.

    PubMed  CAS  Google Scholar 

  95. Hohl, C. M., et al. (1993). Effects of obesity and hypertension on ventricular myocytes: Comparison of cells from adult SHHF/Mcc-cp and JCR:LA-cp rats. Cardiovascular Research, 27(2), 238–242.

    PubMed  CAS  Google Scholar 

  96. Heyen, J. R., et al. (2002). Structural, functional, and molecular characterization of the SHHF model of heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 283(5), H1775–H1784.

    PubMed  CAS  Google Scholar 

  97. Anderson, K. M., et al. (1999). The myocardial beta-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. Hypertension, 33(1 Pt 2), pp. 402–407.

    Google Scholar 

  98. Tamura, T., Said, S., & Gerdes, A. M. (1999). Gender-related differences in myocyte remodeling in progression to heart failure. Hypertension, 33(2), 676–680.

    PubMed  CAS  Google Scholar 

  99. Reffelmann, T., & Kloner, R. A. (2003). Transthoracic echocardiography in rats. Evaluation of commonly used indices of left ventricular dimensions, contractile performance, and hypertrophy in a genetic model of hypertrophic heart failure (SHHF-Mcc-facp-Rats) in comparison with Wistar rats during aging. Basic Research in Cardiology, 98(5), 275–284.

    PubMed  Google Scholar 

  100. Janssen, P. M., et al. (2003). Selective contractile dysfunction of left, not right, ventricular myocardium in the SHHF rat. American Journal of Physiology. Heart and Circulatory Physiology, 284(3), H772–H778.

    PubMed  CAS  Google Scholar 

  101. Onodera, T., et al. (1998). Maladaptive remodeling of cardiac myocyte shape begins long before failure in hypertension. Hypertension, 32(4), 753–757.

    PubMed  CAS  Google Scholar 

  102. Gerdes, A. M., et al. (1996). Myocyte remodeling during the progression to failure in rats with hypertension. Hypertension, 28(4), 609–614.

    PubMed  CAS  Google Scholar 

  103. Park, S., et al. (1997). Verapamil accelerates the transition to heart failure in obese, hypertensive, female SHHF/Mcc-fa(cp) rats. Journal of Cardiovascular Pharmacology, 29(6), 726–733.

    PubMed  CAS  Google Scholar 

  104. Ferrara, C. M., et al. (1996). Exercise training and the glucose transport system in obese SHHF/Mcc-fa(cp) rats. Journal of Applied Physiology, 81(4), 1670–1676.

    PubMed  CAS  Google Scholar 

  105. Pacher, P., et al. (2004). Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 287(5), H2132–H2137.

    PubMed  CAS  Google Scholar 

  106. Anversa, P., et al. (1994). Effects of aging on quantitative structural properties of coronary vasculature and microvasculature in rats. American Journal of Physiology. Heart and Circulatory Physiology, 267(3 Pt 2), pp. H1062–H1073.

    Google Scholar 

  107. Bugger, H., & Abel, E. D. (2009). Rodent models of diabetic cardiomyopathy. Disease Models & Mechanisms, 2(9–10), 454–466.

    CAS  Google Scholar 

  108. Bristow, M. R., et al. (1980). Acute and chronic cardiovascular effects of doxorubicin in the dog: The cardiovascular pharmacology of drug-induced histamine release. Journal of Cardiovascular Pharmacology, 2(5), 487–515.

    PubMed  CAS  Google Scholar 

  109. Djelmami-Hani, M., et al. (2007). Induction of heart failure: Haemodynamic comparison of three different canine models. Laboratory Animals, 41(1), 63–70.

    PubMed  CAS  Google Scholar 

  110. Ferreira, A. L., Matsubara, L. S., & Matsubara, B. B. (2008). Anthracycline-induced cardiotoxicity. Cardiovascular & Hematological Agents In Medicinal Chemistry, 6(4), 278–281.

    CAS  Google Scholar 

  111. Gille, L., & Nohl, H. (1997). Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radical Biology and Medicine, 23(5), 775–782.

    PubMed  CAS  Google Scholar 

  112. Herman, E. H., et al. (1998). Comparison of the chronic toxicity of piroxantrone, losoxantrone and doxorubicin in spontaneously hypertensive rats. Toxicology, 128(1), 35–52.

    PubMed  CAS  Google Scholar 

  113. Liu, X., et al. (2006). Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. Journal of the American College of Cardiology, 48(7), 1438–1447.

    PubMed  CAS  Google Scholar 

  114. Saad, S. Y., Najjar, T. A., & Al-Rikabi, A. C. (2001). The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacological Research, 43(3), 211–218.

    PubMed  CAS  Google Scholar 

  115. Arola, O. J., et al. (2000). Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research, 60(7), 1789–1792.

    PubMed  CAS  Google Scholar 

  116. Li, T., Danelisen, I., & Singal, P. K. (2002). Early changes in myocardial antioxidant enzymes in rats treated with adriamycin. Molecular and Cellular Biochemistry, 232(1–2), 19–26.

    PubMed  CAS  Google Scholar 

  117. Liu, J., et al. (2008). A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. American Journal of Physiology. Heart and Circulatory Physiology, 295(6), H2541–H2550.

    PubMed  CAS  Google Scholar 

  118. Kumarapeli, A. R., et al. (2005). A novel transgenic mouse model reveals deregulation of the ubiquitin-proteasome system in the heart by doxorubicin. FASEB Journal, 19(14), 2051–2053.

    PubMed  Google Scholar 

  119. Tu, V. C., Bahl, J. J., & Chen, Q. M. (2002). Signals of oxidant-induced cardiomyocyte hypertrophy: Key activation of p70 S6 kinase-1 and phosphoinositide 3-kinase. Journal of Pharmacology and Experimental Therapeutics, 300(3), 1101–1110.

    PubMed  CAS  Google Scholar 

  120. Olson, R. D., et al. (2005). Doxorubicin cardiac dysfunction: Effects on calcium regulatory proteins, sarcoplasmic reticulum, and triiodothyronine. Cardiovascular Toxicology, 5(3), 269–283.

    PubMed  CAS  Google Scholar 

  121. Pfizer Inc. (2010). Doxorubicin Hydrochloride for Injection, USP. Available from: http://www.pfizer.com/files/products/uspi_adriamycin.pdf.

  122. U.S. Food and Drug Administration. (2010). Oncology Tools: Dose Calculator. Available from: http://www.accessdata.fda.gov/scripts/cder/onctools/animalresults.cfm.

  123. Hayward, R., & Hydock, D. S. (2007). Doxorubicin cardiotoxicity in the rat: An in vivo characterization. Journal of American Association of Laboratory in Animal Science, 46(4), 20–32.

    CAS  Google Scholar 

  124. Kozluca, O., et al. (1996). Prevention of doxorubicin induced cardiotoxicity by catechin. Cancer Letters, 99(1), 1–6.

    PubMed  CAS  Google Scholar 

  125. Chen, X., et al. (2007). Preventive cardioprotection of erythropoietin against doxorubicin-induced cardiomyopathy. Cardiovascular Drugs and Therapy, 21(5), 367–374.

    PubMed  CAS  Google Scholar 

  126. Matsui, H., et al. (1999). Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Science, 65(12), 1265–1274.

    CAS  Google Scholar 

  127. Ueno, M., et al. (2006). Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. Journal of Pharmacological Science, 101(2), 151–158.

    CAS  Google Scholar 

  128. Deepa, P. R., & Varalakshmi, P. (2003). Protective effect of low molecular weight heparin on oxidative injury and cellular abnormalities in adriamycin-induced cardiac and hepatic toxicity. Chemico-biological Interactions, 146(2), 201–210.

    PubMed  CAS  Google Scholar 

  129. Zheng, M., Han, Q. D., & Xiao, R. P. (2004). Distinct beta-adrenergic receptor subtype signaling in the heart and their pathophysiological relevance. Sheng li xue bao, 56(1), 1–15.

    PubMed  CAS  Google Scholar 

  130. Rockman, H. A., Koch, W. J., & Lefkowitz, R. J. (2002). Seven-transmembrane-spanning receptors and heart function. Nature, 415(6868), 206–212.

    PubMed  CAS  Google Scholar 

  131. Wu, Y., et al. (2009). Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proceedings of National Academic Science USA, 106(14), 5972–5977.

    CAS  Google Scholar 

  132. Boluyt, M.O., et al., Isoproterenol infusion induces alterations in expression of hypertrophy-associated genes in rat heart. American Journal of Physiology. Heart and Circulatory Physiology, 1995. 269(2 Pt 2): p. H638-47.

    Google Scholar 

  133. Zevitz, M. E. & October (2006). Heart Failure. eMedicine from WebMD.

  134. Rona, G. (1985). Catecholamine cardiotoxicity. Journal of Molecular and Cellular Cardiology, 17(4), 291–306.

    PubMed  CAS  Google Scholar 

  135. Peng, Y., et al. (2003). Effects of catecholamine-beta-adrenoceptor-cAMP system on severe patients with heart failure. Chinese Medical Journal, 116(10), 1459–1463.

    PubMed  CAS  Google Scholar 

  136. Abraham, J., et al. (2009). Stress cardiomyopathy after intravenous administration of catecholamines and beta-receptor agonists. Journal of the American College of Cardiology, 53(15), 1320–1325.

    PubMed  CAS  Google Scholar 

  137. Wittstein, I. S. (2008). Acute stress cardiomyopathy. Current Heart Failure Reports, 5(2), 61–68.

    PubMed  CAS  Google Scholar 

  138. Iaccarino, G., et al. (2005). Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. European Heart Journal, 26(17), 1752–1758.

    PubMed  CAS  Google Scholar 

  139. Iaccarino, G., et al. (1999). Bbeta-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: Regulation by beta- but not alpha1-adrenergic stimulation. Hypertension, 33(1 Pt 2), 396–401.

    Google Scholar 

  140. Lamba, S., & Abraham, W. T. (2000). Alterations in adrenergic receptor signaling in heart failure. Heart Failure Reviews, 5(1), 7–16.

    PubMed  CAS  Google Scholar 

  141. Keys, J. R. & Koch, W. J. (2004). The adrenergic pathway and heart failure. Recent progress in hormone research, 59, 13–30.

    Google Scholar 

  142. Nishikawa, M., et al. (1993). Differential down-regulation of pulmonary beta 1- and beta 2-adrenoceptor messenger RNA with prolonged in vivo infusion of isoprenaline. European Journal of Pharmacology, 247(2), 131–138.

    PubMed  CAS  Google Scholar 

  143. Yeager, J. C., & Iams, S. G. (1981). The hemodynamics of isoproterenol-induced cardiac failure in the rat. Circulatory Shock, 8(2), 151–163.

    PubMed  CAS  Google Scholar 

  144. Maisel, A. S., et al. (1989). Regulation of cardiac beta-adrenergic receptors by captopril. Implications for congestive heart failure. Circulation, 80(3), 669–675.

    PubMed  CAS  Google Scholar 

  145. Murray, D. R., Prabhu, S. D., & Chandrasekar, B. (2000). Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation, 101(20), 2338–2341.

    PubMed  CAS  Google Scholar 

  146. Nerme, V., Abrahamsson, T., & Vauquelin, G. (1990). Chronic isoproterenol administration causes altered beta adrenoceptor-Gs-coupling in guinea pig lung. Journal of Pharmacology and Experimental Therapeutics, 252(3), 1341–1346.

    PubMed  CAS  Google Scholar 

  147. Jia, Y. X., et al. (2006). Apelin protects myocardial injury induced by isoproterenol in rats. Regulatory Peptides, 133(1–3), 147–154.

    PubMed  CAS  Google Scholar 

  148. Montgomery, R. L., et al. (2008). Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. Journal of Clinical Investigation, 118(11), 3588–3597.

    PubMed  CAS  Google Scholar 

  149. Reiken, S., et al. (2003). Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. Journal of Biological Chemistry, 278(1), 444–453.

    PubMed  CAS  Google Scholar 

  150. Zhang, Z. S., et al. (2005). Enhanced inhibition of L-type Ca2 + current by beta3-adrenergic stimulation in failing rat heart. Journal of Pharmacology and Experimental Therapeutics, 315(3), 1203–1211.

    PubMed  CAS  Google Scholar 

  151. Borlak, J., & Thum, T. (2003). Hallmarks of ion channel gene expression in end-stage heart failure. FASEB Journal, 17(12), 1592–1608.

    PubMed  CAS  Google Scholar 

  152. Grimm, D., et al. (1998). Development of heart failure following isoproterenol administration in the rat: Role of the renin-angiotensin system. Cardiovascular Research, 37(1), 91–100.

    PubMed  CAS  Google Scholar 

  153. Yan, Y. H., et al. (2008). Effects of diesel exhaust particles on left ventricular function in isoproterenol-induced myocardial injury and healthy rats. Inhalation Toxicology, 20(2), 199–203.

    PubMed  CAS  Google Scholar 

  154. Grimm, D., et al. (1999). Effects of beta-receptor blockade and angiotensin II type I receptor antagonism in isoproterenol-induced heart failure in the rat. Cardiovascular Pathology, 8(6), 315–323.

    PubMed  CAS  Google Scholar 

  155. Brouri, F., et al. (2002). Toxic cardiac effects of catecholamines: Role of beta-adrenoceptor downregulation. European Journal of Pharmacology, 456(1–3), 69–75.

    PubMed  CAS  Google Scholar 

  156. Brouri, F., et al. (2004). Blockade of beta 1- and desensitization of beta 2-adrenoceptors reduce isoprenaline-induced cardiac fibrosis. European Journal of Pharmacology, 485(1–3), 227–234.

    PubMed  CAS  Google Scholar 

  157. Zhang, G. X., et al. (2005). Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovascular Research, 65(1), 230–238.

    PubMed  CAS  Google Scholar 

  158. Osadchii, O. E., et al. (2007). Cardiac dilatation and pump dysfunction without intrinsic myocardial systolic failure following chronic beta-adrenoreceptor activation. American Journal of Physiology. Heart and Circulatory Physiology, 292(4), H1898–H1905.

    PubMed  CAS  Google Scholar 

  159. Harden, T. K., Su, Y. F., & Perkins, J. P. (1979). Catecholamine-induced desensitization involves an uncoupling of beta-adrenergic receptors and adenylate cyclase. Journal of Cyclic Nucleotide Research, 5(2), 99–106.

    PubMed  CAS  Google Scholar 

  160. Benjamin, I. J., et al. (1989). Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circulation Research, 65(3), 657–670.

    PubMed  CAS  Google Scholar 

  161. Friddle, C. J., et al. (2000). Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6745–6750.

    PubMed  CAS  Google Scholar 

  162. Leenen, F. H., White, R., & Yuan, B. (2001). Isoproterenol-induced cardiac hypertrophy: Role of circulatory versus cardiac renin-angiotensin system. American Journal of Physiology. Heart and Circulatory Physiology, 281(6), H2410–H2416.

    PubMed  CAS  Google Scholar 

  163. Gengo, P., et al. (1988). Regulation by chronic drug administration of neuronal and cardiac calcium channel, beta-adrenoceptor and muscarinic receptor levels. Biochemical Pharmacology, 37(4), 627–633.

    PubMed  CAS  Google Scholar 

  164. Hayes, J. S., Pollock, G. D., & Fuller, R. W. (1984). In vivo cardiovascular responses to isoproterenol, dopamine and tyramine after prolonged infusion of isoproterenol. Journal of Pharmacology and Experimental Therapeutics, 231(3), 633–639.

    PubMed  CAS  Google Scholar 

  165. Bos, R., et al. (2005). Inhibition of catecholamine-induced cardiac fibrosis by an aldosterone antagonist. Journal of Cardiovascular Pharmacology, 45(1), 8–13.

    PubMed  CAS  Google Scholar 

  166. Oliveira, E. M., & Krieger, J. E. (2005). Chronic beta-adrenoceptor stimulation and cardiac hypertrophy with no induction of circulating renin. European Journal of Pharmacology, 520(1–3), 135–141.

    PubMed  CAS  Google Scholar 

  167. Takeshita, D., et al. (2008). Isoproterenol-induced hypertrophied rat hearts: Does short-term treatment correspond to long-term treatment? The Journal of Physiological Sciences, 58(3), 179–188.

    PubMed  CAS  Google Scholar 

  168. Johar, S., et al. (2006). Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB Journal, 20(9), 1546–1548.

    PubMed  CAS  Google Scholar 

  169. Sakata, Y., et al. (2003). Angiotensin II type 1 receptor blockade prevents diastolic heart failure through modulation of Ca(2 +) regulatory proteins and extracellular matrix. Journal of Hypertension, 21(9), 1737–1745.

    PubMed  CAS  Google Scholar 

  170. Di Zhang, A., et al. (2008). Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension, 52(6), 1060–1067.

    PubMed  Google Scholar 

  171. Freund, C., et al. (2005). Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation, 111(18), 2319–2325.

    PubMed  CAS  Google Scholar 

  172. Beck, A., et al. (1985). Angiotensin-induced hypertension in conscious dogs: Biochemical parameters and baroreceptor reflex. Cardiovascular Research, 19(11), 721–726.

    PubMed  CAS  Google Scholar 

  173. Cao, R. Y., et al. (2010). The murine angiotensin II-induced abdominal aortic aneurysm model: Rupture risk and inflammatory progression patterns. Frontiers in Pharmacology, 1(9), 1–7.

    Google Scholar 

  174. Perrino, C., et al. (2006). Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. Journal of Clinical Investigation, 116(6), 1547–1560.

    PubMed  CAS  Google Scholar 

  175. Hershman, J. M. & March (2008). Hypothyroidism: Thyroid Disorders: Merck Manual Professional. Merck.

  176. Maitra, A. & Abbas, A. K. (2005). The endocrine system. In V. Kumar, A. K. Abbas, & N. Fausto (Eds.), Robbins and Cotran pathologic basis of disease. Philadelphia, PA: Elsevier Saunders, pp. 1155–1226.

  177. Gay, R. G., et al. (1988). Effects of thyroid state on venous compliance and left ventricular performance in rats. American Journal of Physiology, 254(1 Pt 2), pp. H81–H88.

    Google Scholar 

  178. Tang, Y. D., et al. (2005). Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation, 112(20), 3122–3130.

    PubMed  CAS  Google Scholar 

  179. Liu, Z., & Gerdes, A. M. (1990). Influence of hypothyroidism and the reversal of hypothyroidism on hemodynamics and cell size in the adult rat heart. Journal of Molecular and Cellular Cardiology, 22(12), 1339–1348.

    PubMed  CAS  Google Scholar 

  180. Kisso, B., et al. (2008). Effect of low thyroid function on cardiac structure and function in spontaneously hypertensive heart failure rats. Journal of Cardiac Failure, 14(2), 167–171.

    PubMed  CAS  Google Scholar 

  181. Schuyler, G. T., & Yarbrough, L. R. (1990). Changes in myosin and creatine kinase mRNA levels with cardiac hypertrophy and hypothyroidism. Basic Research in Cardiology, 85(5), 481–494.

    PubMed  CAS  Google Scholar 

  182. Seta, Y., et al. (1996). Basic mechanisms in heart failure: The cytokine hypothesis. Journal of Cardiac Failure, 2(3), 243–249.

    PubMed  CAS  Google Scholar 

  183. Bryant, D., et al. (1998). Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation, 97(14), 1375–1381.

    PubMed  CAS  Google Scholar 

  184. Panagopoulou, P., et al. (2008). Desmin mediates TNF-alpha-induced aggregate formation and intercalated disk reorganization in heart failure. Journal of Cell Biology, 181(5), 761–775.

    PubMed  CAS  Google Scholar 

  185. Prabhu, S. D. (2004). Cytokine-induced modulation of cardiac function. Circulation Research, 95(12), 1140–1153.

    PubMed  CAS  Google Scholar 

  186. Mariappan, N., et al. (2007). TNF-alpha-induced mitochondrial oxidative stress and cardiac dysfunction: Restoration by superoxide dismutase mimetic Tempol. American Journal of Physiology. Heart and Circulatory Physiology, 293(5), H2726–H2737.

    PubMed  CAS  Google Scholar 

  187. Bozkurt, B., et al. (1998). Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation, 97(14), 1382–1391.

    PubMed  CAS  Google Scholar 

  188. Biaggioni, I. (2007). The sympathetic nervous system and blood volume regulation: Lessons from autonomic failure patients. American Journal of the Medical Sciences, 334(1), 61–64.

    PubMed  Google Scholar 

  189. Gradin, K., Elam, M. & Persson, B. (1985). Chronic salt loading and central adrenergic mechanisms in the spontaneously hypertensive rat. Acta Pharmacologica et Toxicologica (Copenh), 56(3), 204–213.

    Google Scholar 

  190. Gradin, K., et al. (1988). Adrenergic mechanisms during hypertension induced by sucrose and/or salt in the spontaneously hypertensive rat. Naunyn-Schmiedebergs Arch Pharmacol, 337(1), 47–52.

    PubMed  CAS  Google Scholar 

  191. Takata, Y., et al. (1988). Central and peripheral mechanisms of the enhanced hypertension following long-term salt loading in spontaneously hypertensive rats. Japanese Circulation Journal, 52(11), 1317–1322.

    PubMed  CAS  Google Scholar 

  192. Ahn, J., et al. (2004). Cardiac structural and functional responses to salt loading in SHR. American Journal of Physiology. Heart and Circulatory Physiology, 287(2), H767–H772.

    PubMed  CAS  Google Scholar 

  193. Varagic, J., et al. (2006). Myocardial fibrosis, impaired coronary hemodynamics, and biventricular dysfunction in salt-loaded SHR. American Journal of Physiology. Heart and Circulatory Physiology, 290(4), H1503–H1509.

    PubMed  CAS  Google Scholar 

  194. Watson, P. A., et al. (2007). Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. American Journal of Physiology. Heart and Circulatory Physiology, 293(1), H246–H259.

    PubMed  CAS  Google Scholar 

  195. Miyachi, M., et al. (2009). Exercise training alters left ventricular geometry and attenuates heart failure in dahl salt-sensitive hypertensive rats. Hypertension, 53(4), 701–707.

    PubMed  CAS  Google Scholar 

  196. Yu, H. C., et al. (1998). Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation, 98(23), 2621–2628.

    PubMed  CAS  Google Scholar 

  197. Radin, M. J., et al. (2008). Salt-induced cardiac hypertrophy is independent of blood pressure and endothelin in obese, heart failure-prone SHHF rats. Clinical and Experimental Hypertension, 30(7), 541–552.

    PubMed  CAS  Google Scholar 

  198. Iwanaga, Y., et al. (2001). Differential effects of angiotensin II versus endothelin-1 inhibitions in hypertrophic left ventricular myocardium during transition to heart failure. Circulation, 104(5), 606–612.

    PubMed  CAS  Google Scholar 

  199. Takenaka, H., et al. (2006). Angiotensin II, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension. Journal of Molecular and Cellular Cardiology, 41(6), 989–997.

    PubMed  CAS  Google Scholar 

  200. Ogata, T., et al. (2004). Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. Journal of the American College of Cardiology, 43(8), 1481–1488.

    PubMed  CAS  Google Scholar 

  201. Kramer, F., et al. (2008). Plasma concentrations of matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1 and osteopontin reflect severity of heart failure in DOCA-salt hypertensive rat. Biomarkers, 13(3), 270–281.

    PubMed  CAS  Google Scholar 

  202. Bjelogrlic, S. K., et al. (2007). Effects of dexrazoxane and amifostine on evolution of Doxorubicin cardiomyopathy in vivo. Experimental Biology and Medicine, 232(11), 1414–1424.

    PubMed  CAS  Google Scholar 

  203. Xu, M., et al. (2008). Protective effect of the endothelin antagonist CPU0213 against isoprenaline-induced heart failure by suppressing abnormal expression of leptin, calcineurin and SERCA2a in rats. Journal of Pharmacy and Pharmacology, 60(6), 739–745.

    PubMed  CAS  Google Scholar 

  204. Suzuki, M., et al. (1998). Altered inotropic response of endothelin-1 in cardiomyocytes from rats with isoproterenol-induced cardiomyopathy. Cardiovascular Research, 39(3), 589–599.

    PubMed  CAS  Google Scholar 

  205. Meszaros, J., & Levai, G. (1990). Ultrastructural and electrophysiological alterations during the development of catecholamine-induced cardiac hypertrophy and failure. Acta Biologica Hungarica, 41(4), 289–307.

    PubMed  CAS  Google Scholar 

  206. Teerlink, J. R., Pfeffer, J. M., & Pfeffer, M. A. (1994). Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circulation Research, 75(1), 105–113.

    PubMed  CAS  Google Scholar 

  207. Bruch, C., et al. (2000). Tei-index in patients with mild-to-moderate congestive heart failure. European Heart Journal, 21(22), 1888–1895.

    PubMed  CAS  Google Scholar 

  208. Kim-Mitsuyama, S., et al. (2004). Additive beneficial effects of the combination of a calcium channel blocker and an angiotensin blocker on a hypertensive rat-heart failure model. Hypertension Research, 27(10), 771–779.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank and acknowledge Drs. Urmila Kodavanti of the U.S. EPA and David Kurtz of Experimental Pathology Laboratories for their reviews of this manuscript.

Disclaimer

This paper has been reviewed and approved for release by the National Health and Environmental Effects Research Laboratory, U.S. EPA. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Declaration of interest

Alex Carll is supported by UNC/EPA CR83323601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex P. Carll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carll, A.P., Willis, M.S., Lust, R.M. et al. Merits of Non-Invasive Rat Models of Left Ventricular Heart Failure. Cardiovasc Toxicol 11, 91–112 (2011). https://doi.org/10.1007/s12012-011-9103-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9103-5

Keywords

Navigation