Skip to main content

Advertisement

Log in

T Lymphocyte Regulation of Lysyl Oxidase in Diet-Induced Cardiac Fibrosis

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Left ventricular diastolic dysfunction is an important predictor of prognosis and mortality of heart failure. Increased left ventricular stiffness can be associated with excessive myocardial fibrosis and increased cross-linked collagen by the enzyme lysyl oxidase (LOX). These cardiac extracellular matrix (ECM) remodeling processes are affected by T-lymphocyte function and phenotype. We sought to examine the role of T lymphocytes in myocardial LOX regulation in diet-induced fibrotic hearts. Female SCID mice, devoid of functional T lymphocytes, and wild-type (WT) C57BL/6 were treated with a high-fat high-simple carbohydrate (HFHSC) diet for 12 months. HFHSC-fed WT mice demonstrated a significant increase in the catalytic activity of myocardial LOX compared with respective controls. These changes coincided with a marked increase in ECM collagen cross-linking and impaired diastolic filling pattern. However, induction of LOX was minimal in the SCID mice compared with the WT group. Correspondingly fibrillar cross-linked collagen concentrations and diastolic dysfunction were less prominent in the SCID mice compared with the WT group. Our results suggest a role for T lymphocytes in this dietary induction of diastolic dysfunction through modulation of LOX-dependent collagen maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Owan, T. E., Hodge, D. O., Herges, R. M., Jacobsen, S. J., Roger, V. L., & Redfield, M. M. (2006). Trends in prevalence and outcome of heart failure with preserved ejection fraction. The New England Journal of Medicine, 355, 251–259.

    Article  CAS  PubMed  Google Scholar 

  2. Kass, D. A., Bronzwaer, J. G. F., & Paulus, W. J. (2004). What mechanisms underlie diastolic dysfunction in heart failure? Circulation Research, 94, 1533–1542.

    Article  CAS  PubMed  Google Scholar 

  3. Zile, M. R., Baicu, C. F., & Gaasch, W. H. (2004). Diastolic heart failure—Abnormalities in active relaxation and passive stiffness of the left ventricle. The New England Journal of Medicine, 350, 1953–1959.

    Article  CAS  PubMed  Google Scholar 

  4. Badenhorst, D., Maseko, M., Tsotetsi, O. J., Naidoo, A., Brooksbank, R., Norton, G. R., et al. (2003). Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovascular Research, 57, 632–641.

    Article  CAS  PubMed  Google Scholar 

  5. Smith-Mungo, L. I., & Kagan, H. M. (1998). Lysyl oxidase: Properties, regulation and multiple functions in biology. Matrix Biology, 16, 387–398.

    Article  CAS  PubMed  Google Scholar 

  6. Yndestad, A., Ueland, T., Oie, E., Florholmen, G., Halvorsen, B., Attramadal, H., et al. (2004). Elevated levels of activin a in heart failure—Potential role in myocardial remodeling. Circulation, 109, 1379–1385.

    Article  CAS  PubMed  Google Scholar 

  7. Yu, Q. L., Watson, R. R., Marchalonis, J. J., & Larson, D. F. (2005). A role for T lymphocytes in mediating cardiac diastolic function. American journal of physiology Heart and circulatory physiology, 289, H643–H651.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, Q. L., Horak, K., & Larson, D. F. (2006). Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling. Hypertension, 48, 98–104.

    Article  CAS  PubMed  Google Scholar 

  9. Zibadi, S., Yu, Q., Rohdewald, P. J., Larson, D. F., & Watson, R. R. (2007). Impact of Pycnogenol (R) on cardiac extracellular matrix remodeling induced by L-NAME administration to old mice. Cardiovascular Toxicology, 7, 10–18.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, B., Larson, D. F., Beischel, J., Kelley, R., Shi, J., & Watson, R. R. (2001). Validation of conductance catheter system for quantification of murine pressure-volume loops. International journal of surgical investigation, 14, 341–355.

    CAS  Google Scholar 

  11. Palamakumbura, A. H., & Trackman, P. C. (2002). A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Analytical Biochemistry, 300, 245–251.

    Article  CAS  PubMed  Google Scholar 

  12. Zibadi, S., Vazquez, R., Moore, D., Larson, D. F., & Watson, R. R. (2009). Myocardial lysyl oxidase regulation of cardiac remodeling in a murine model of diet-induced metabolic syndrome. American journal of physiology Heart and circulatory physiology, 297, H976–H982.

    Article  CAS  PubMed  Google Scholar 

  13. Smith-Mungo, L. I., & Kagan, H. M. (1998). Lysyl oxidase: Properties, regulation and multiple functions in biology. Matrix Biology, 16, 387–398.

    Article  CAS  PubMed  Google Scholar 

  14. Lopez, B., Querejeta, R., Gonzalez, A., Beaumont, J., Larman, M., & Diez, J. (2009). Impact of treatment on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart failure. Hypertension, 53, U236–U253.

    Article  Google Scholar 

  15. Kellar, R. S., Shepherd, B. R., Larson, D. F., Naughton, G. K., & Williams, S. K. (2005). Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue engineering, 11, 1678–1687.

    Article  CAS  PubMed  Google Scholar 

  16. Song, Y. L., Ford, J. W., Gordon, D., & Shanley, C. J. (2000). Regulation of lysyl oxidase by interferon-gamma in rat aortic smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 982–988.

    CAS  PubMed  Google Scholar 

  17. Tan, R. S. P., Taniguchi, T., & Harada, H. (1996). Identification of the lysyl oxidase gene as a target of the antioncogene transcription factor, IRF-1, and its possible role in tumor suppression. Cancer Research, 56, 2417–2421.

    CAS  PubMed  Google Scholar 

  18. Shanley, C. J., GharaeeKermani, M., Sarkar, R., Welling, T. H., Kriegel, A., Ford, J. W., et al. (1997). Transforming growth factor-beta(1) increases lysyl oxidase enzyme activity and mRNA in rat aortic smooth muscle cells. Journal Vascular Surgery, 25, 446–452.

    Article  CAS  Google Scholar 

  19. Rodriguez, C., Alcudia, J. F., Martinez-Gonzalez, J., Raposo, B., Navarro, M. A., & Badimon, L. (2008). Lysyl oxidase (LOX) down-regulation by TNF alpha: A new mechanism underlying TNF alpha-induced endothelial dysfunction. Atherosclerosis, 196, 558–564.

    Article  CAS  PubMed  Google Scholar 

  20. Hofnagel, O., Luechtenborg, B., Stolle, K., Lorkowski, S., Eschert, H., Plenz, G., et al. (2004). Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1789–1795.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, Q. L., & Larson, D. F. (2007). Toll-like receptor induced il-12 and il-18 mediates cardiac ECM remodeling mediated by lysyl oxidase. Journal of Cardiac Failure, 13, 98.

    Article  Google Scholar 

  22. Garrigue-Antar, L., Hartigan, N., & Kadler, K. E. (2002). Post-translational modification of bone morphogenetic protein-1 is required for secretion and stability of the protein. Journal Biological Chemistry, 277, 43327–43334.

    Article  CAS  Google Scholar 

  23. Bock, O., Hoftmann, J., Theophile, K., Hussein, K., Wiese, B., Schlue, J., et al. (2008). Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. American Journal of Pathology, 172, 951–960.

    Article  CAS  PubMed  Google Scholar 

  24. Li, Y. Y., McTiernan, C. F., & Feldman, A. M. (2000). Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovascular Research, 46, 214–224.

    Article  CAS  PubMed  Google Scholar 

  25. Messerli, F. H. (2004). TIMPs, MMPs and cardiovascular disease. European Heart Journal, 25, 1475–1476.

    Article  PubMed  Google Scholar 

  26. Brown, R. D., Jones, G. M., Laird, R. E., Hudson, P., & Long, C. S. (2007). Cytokines regulate matrix metalloproteinases and migration in cardiac fibroblasts. Biochemical and Biophysical Research Communications, 362, 200–205.

    Article  CAS  PubMed  Google Scholar 

  27. Siwik, D. A., Chang, D. L. F., & Colucci, W. S. (2000). Interleukin-1 beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circulation Research, 86, 1259–1265.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from NCCAM R21 AT004177 and Wallace Research Foundation to RRW, and R01 HL079206 from NIH to DFL. The authors would like to thank to Felina Cordova and Gayle Bentley at the University of Arizona for their assistance in this project.

Conflict of interest statement

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zibadi, S., Vazquez, R., Larson, D.F. et al. T Lymphocyte Regulation of Lysyl Oxidase in Diet-Induced Cardiac Fibrosis. Cardiovasc Toxicol 10, 190–198 (2010). https://doi.org/10.1007/s12012-010-9078-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-010-9078-7

Keywords

Navigation