Skip to main content

Advertisement

Log in

Mitochondrial Involvement in Cardiac Apoptosis During Ischemia and Reperfusion: Can We Close the Box?

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Myocardial ischemia is the main cause of death in the Western societies. Therapeutic strategies aimed to protect the ischemic myocardium have been extensively studied. Reperfusion is the definitive treatment for acute coronary syndromes, especially acute myocardial infarction; however, reperfusion has the potential to exacerbate tissue injury, a process termed reperfusion injury. Ischemia/reperfusion (I/R) injury may lead to cardiac arrhythmias and contractile dysfunction that involve apoptosis and necrosis in the heart. The present review describes the mitochondrial role on cardiomyocyte death and some potential pharmacological strategies aimed at preventing the opening of the box, i.e., mitochondrial dysfunction and membrane permeabilization that result into cell death. Data in the literature suggest that mitochondrial disruption during I/R can be avoided, although uncertainties still exist, including the fact that the optimal windows of treatment are still fairly unknown. Despite this, the protection of cardiac mitochondrial function should be critical for the patient survival, and new strategies to avoid mitochondrial alterations should be designed to avoid cardiomyocyte loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hearse, D. J. (1990). Ischemia, reperfusion, and the determinants of tissue injury. Cardiovascular Drugs and Therapy, 4(Suppl 4), 767–776.

    PubMed  Google Scholar 

  2. Holleyman, C. R., & Larson, D. F. (2001). Apoptosis in the ischemic reperfused myocardium. Perfusion, 16, 491–502.

    CAS  PubMed  Google Scholar 

  3. Marczin, N., El-Habashi, N., Hoare, G. S., Bundy, R. E., & Yacoub, M. (2003). Antioxidants in myocardial ischemia–reperfusion injury: Therapeutic potential and basic mechanisms. Archives of Biochemistry and Biophysics, 420, 222–236.

    CAS  PubMed  Google Scholar 

  4. Ferrari, R., Curello, S., Boffa, G. M., Condorelli, E., Pasini, E., Guarnieri, G., et al. (1989). Oxygen free radical-mediated heart injury in animal models and during bypass surgery in humans. Effects of alpha-tocopherol. Annals of the New York Academy of Sciences, 570, 237–253.

    CAS  PubMed  Google Scholar 

  5. Ambrosio, G., Zweier, J. L., Duilio, C., Kuppusamy, P., Santoro, G., Elia, P. P., et al. (1993). Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. The Journal of Biological Chemistry, 268, 18532–18541.

    CAS  PubMed  Google Scholar 

  6. Nagy, N., Malik, G., Tosaki, A., Ho, Y. S., Maulik, N., & Das, D. K. (2008). Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis. Journal of Molecular and Cellular Cardiology, 44, 252–260.

    CAS  PubMed  Google Scholar 

  7. Chen, Z., Siu, B., Ho, Y. S., Vincent, R., Chua, C. C., Hamdy, R. C., et al. (1998). Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. Journal of Molecular and Cellular Cardiology, 30, 2281–2289.

    CAS  PubMed  Google Scholar 

  8. Li, G., Chen, Y., Saari, J. T., & Kang, Y. J. (1997). Catalase-overexpressing transgenic mouse heart is resistant to ischemia–reperfusion injury. American Journal of Physiology, 273, H1090–H1095.

    CAS  PubMed  Google Scholar 

  9. Yoshida, T., Watanabe, M., Engelman, D. T., Engelman, R. M., Schley, J. A., Maulik, N., et al. (1996). Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 28, 1759–1767.

    CAS  PubMed  Google Scholar 

  10. Lemieux, H., & Hoppel, C. L. (2009). Mitochondria in the human heart. Journal of Bioenergetics and Biomembranes, 41, 99–106.

    CAS  PubMed  Google Scholar 

  11. Riva, A., Tandler, B., Loffredo, F., Vazquez, E., & Hoppel, C. (2005). Structural differences in two biochemically defined populations of cardiac mitochondria. American Journal of Physiology Heart and circulatory Physiology, 289, H868–H872.

    CAS  PubMed  Google Scholar 

  12. Palmer, J. W., Tandler, B., & Hoppel, C. L. (1977). Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. The Journal of Biological Chemistry, 252, 8731–8739.

    CAS  PubMed  Google Scholar 

  13. Palmer, J. W., Tandler, B., & Hoppel, C. L. (1985). Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: Effects of procedural manipulations. Archives of Biochemistry and Biophysics, 236, 691–702.

    CAS  PubMed  Google Scholar 

  14. Lesnefsky, E. J., Slabe, T. J., Stoll, M. S., Minkler, P. E., & Hoppel, C. L. (2001). Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. American Journal of Physiology Heart and Circulatory Physiology, 280, H2770–H2778.

    CAS  PubMed  Google Scholar 

  15. Lesnefsky, E. J., Tandler, B., Ye, J., Slabe, T. J., Turkaly, J., & Hoppel, C. L. (1997). Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. American Journal of Physiology, 273, H1544–H1554.

    CAS  PubMed  Google Scholar 

  16. Duan, J., & Karmazyn, M. (1989). Relationship between oxidative phosphorylation and adenine nucleotide translocase activity of two populations of cardiac mitochondria and mechanical recovery of ischemic hearts following reperfusion. Canadian Journal of Physiology and Pharmacology, 67, 704–709.

    CAS  PubMed  Google Scholar 

  17. Loos, B., & Engelbrecht, A. M. (2009). Cell death: A dynamic response concept. Autophagy, 5, 590–603.

    CAS  PubMed  Google Scholar 

  18. Mani, K. (2008). Programmed cell death in cardiac myocytes: Strategies to maximize post-ischemic salvage. Heart Failure Reviews, 13, 193–209.

    PubMed  Google Scholar 

  19. Dhesi, P., Tehrani, F., Fuess, J., & Schwarz, E. R. (2009). How does the heart (not) die? The role of autophagy in cardiomyocyte homeostasis and cell death. Heart Failure Reviews, in press.

  20. Gustafsson, A. B., & Gottlieb, R. A. (2008). Eat your heart out: Role of autophagy in myocardial ischemia/reperfusion. Autophagy, 4, 416–421.

    CAS  PubMed  Google Scholar 

  21. Hamacher-Brady, A., Brady, N. R., & Gottlieb, R. A. (2006). The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovascular Drugs and Therapy, 20, 445–462.

    CAS  PubMed  Google Scholar 

  22. Lee, Y., & Gustafsson, A. B. (2009). Role of apoptosis in cardiovascular disease. Apoptosis, 14, 536–548.

    PubMed  Google Scholar 

  23. Gupta, S. (2003). Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). International Journal of Oncology, 22, 15–20.

    CAS  PubMed  Google Scholar 

  24. Baines, C. P. (2009). The mitochondrial permeability transition pore and ischemia–reperfusion injury. Basic Research in Cardiology, 104, 181–188.

    CAS  PubMed  Google Scholar 

  25. Riedl, S. J., & Salvesen, G. S. (2007). The apoptosome: Signalling platform of cell death. Nature Reviews Molecular Cell Biology, 8, 405–413.

    CAS  PubMed  Google Scholar 

  26. Buja, L. M. (2005). Myocardial ischemia and reperfusion injury. Cardiovascular Pathology, 14, 170–175.

    CAS  PubMed  Google Scholar 

  27. Freude, B., Masters, T. N., Robicsek, F., Fokin, A., Kostin, S., Zimmermann, R., et al. (2000). Apoptosis is initiated by myocardial ischemia and executed during reperfusion. Journal of Molecular and Cellular Cardiology, 32, 197–208.

    CAS  PubMed  Google Scholar 

  28. Lee, P., Sata, M., Lefer, D. J., Factor, S. M., Walsh, K., & Kitsis, R. N. (2003). Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia–reperfusion in vivo. American Journal of Physiology Heart and Circulatory Physiology, 284, H456–H463.

    CAS  PubMed  Google Scholar 

  29. Chen, Z., Chua, C. C., Ho, Y. S., Hamdy, R. C., & Chua, B. H. (2001). Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. American Journal of Physiology Heart and Circulatory Physiology, 280, H2313–H2320.

    CAS  PubMed  Google Scholar 

  30. Bialik, S., Cryns, V. L., Drincic, A., Miyata, S., Wollowick, A. L., Srinivasan, A., et al. (1999). The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circulation Research, 85, 403–414.

    CAS  PubMed  Google Scholar 

  31. Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M., & Engler, R. L. (1994). Reperfusion injury induces apoptosis in rabbit cardiomyocytes. Journal of Clinical Investigation, 94, 1621–1628.

    CAS  PubMed  Google Scholar 

  32. Zhao, Z. Q., & Vinten-Johansen, J. (2002). Myocardial apoptosis and ischemic preconditioning. Cardiovascular Research, 55, 438–455.

    CAS  PubMed  Google Scholar 

  33. Black, S. C., Huang, J. Q., Rezaiefar, P., Radinovic, S., Eberhart, A., Nicholson, D. W., et al. (1998). Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat. Journal of Molecular and Cellular Cardiology, 30, 733–742.

    CAS  PubMed  Google Scholar 

  34. Chakrabarti, S., Hoque, A. N., & Karmazyn, M. (1997). A rapid ischemia-induced apoptosis in isolated rat hearts and its attenuation by the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). Journal of Molecular and Cellular Cardiology, 29, 3169–3174.

    CAS  PubMed  Google Scholar 

  35. Borutaite, V., Budriunaite, A., Morkuniene, R., & Brown, G. C. (2001). Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischaemia. Biochimica et Biophysica Acta, 1537, 101–109.

    CAS  PubMed  Google Scholar 

  36. Borutaite, V., Jekabsone, A., Morkuniene, R., & Brown, G. C. (2003). Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. Journal of Molecular and Cellular Cardiology, 35, 357–366.

    CAS  PubMed  Google Scholar 

  37. Akiyama, K., Gluckman, T. L., Terhakopian, A., Jinadasa, P. M., Narayan, S., Singaswamy, S., et al. (1997). Apoptosis in experimental myocardial infarction in situ and in the perfused heart in vitro. Tissue and Cell, 29, 733–743.

    CAS  PubMed  Google Scholar 

  38. Zhao, Z. Q. (2004). Oxidative stress-elicited myocardial apoptosis during reperfusion. Current Opinion in Pharmacology, 4, 159–165.

    CAS  PubMed  Google Scholar 

  39. Kagan, V. E., Tyurina, Y. Y., Bayir, H., Chu, C. T., Kapralov, A. A., Vlasova, I. I., et al. (2006). The “pro-apoptotic genies” get out of mitochondria: Oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chemico Biological Interactions, 163, 15–28.

    CAS  PubMed  Google Scholar 

  40. St-Pierre, J., Brand, M. D., & Boutilier, R. G. (2000). Mitochondria as ATP consumers: Cellular treason in anoxia. Proceedings of the National Academy of Sciences of the United States of America, 97, 8670–8674.

    CAS  PubMed  Google Scholar 

  41. Chen, Q., Moghaddas, S., Hoppel, C. L., & Lesnefsky, E. J. (2008). Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. American Journal of Physiology Cell Physiology, 294, C460–C466.

    CAS  PubMed  Google Scholar 

  42. Andreyev, A. Y., Kushnareva, Y. E., & Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc), 70, 200–214.

    CAS  Google Scholar 

  43. Ferrari, R., Ceconi, C., Curello, S., Cargnoni, A., De Giuli, F., & Visioli, O. (1992). Occurrence of oxidative stress during myocardial reperfusion. Molecular and Cellular Biochemistry, 111, 61–69.

    CAS  PubMed  Google Scholar 

  44. Dhalla, N. S., Elmoselhi, A. B., Hata, T., & Makino, N. (2000). Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovascular Research, 47, 446–456.

    CAS  PubMed  Google Scholar 

  45. Ferrari, R., Guardigli, G., Mele, D., Percoco, G. F., Ceconi, C., & Curello, S. (2004). Oxidative stress during myocardial ischaemia and heart failure. Current Pharmaceutical Design, 10, 1699–1711.

    CAS  PubMed  Google Scholar 

  46. Powers, S. K., Murlasits, Z., Wu, M., & Kavazis, A. N. (2007). Ischemia–reperfusion-induced cardiac injury: A brief review. Medicine and Science in Sports and Exercise, 39, 1529–1536.

    PubMed  Google Scholar 

  47. Halestrap, A. P. (2009). What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology, 46, 821–831.

    CAS  PubMed  Google Scholar 

  48. Zamzami, N., Marchetti, P., Castedo, M., Hirsch, T., Susin, S. A., Masse, B., et al. (1996). Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Letters, 384, 53–57.

    CAS  PubMed  Google Scholar 

  49. Skulachev, V. P. (2000). How proapoptotic proteins can escape from mitochondria? Free Radical Biology and Medicine, 29, 1056–1059.

    CAS  Google Scholar 

  50. Borutaite, V., & Brown, G. C. (2003). Mitochondria in apoptosis of ischemic heart. FEBS Letters, 541, 1–5.

    CAS  PubMed  Google Scholar 

  51. Baines, C. P. (2009). The molecular composition of the mitochondrial permeability transition pore. Journal of Molecular and Cellular Cardiology, 46, 850–857.

    CAS  PubMed  Google Scholar 

  52. Javadov, S., & Karmazyn, M. (2007). Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cellular Physiology and Biochemistry, 20, 1–22.

    CAS  PubMed  Google Scholar 

  53. Kim, J. S., He, L., & Lemasters, J. J. (2003). Mitochondrial permeability transition: A common pathway to necrosis and apoptosis. Biochemical and Biophysical Research Communications, 304, 463–470.

    CAS  PubMed  Google Scholar 

  54. Dedkova, E. N., & Blatter, L. A. (2008). Mitochondrial Ca2+ and the heart. Cell Calcium, 44, 77–91.

    CAS  PubMed  Google Scholar 

  55. Dong, Z., Saikumar, P., Weinberg, J. M., & Venkatachalam, M. A. (2006). Calcium in cell injury and death. Annu Rev Pathol, 1, 405–434.

    CAS  PubMed  Google Scholar 

  56. Chen, M., Won, D. J., Krajewski, S., & Gottlieb, R. A. (2002). Calpain and mitochondria in ischemia/reperfusion injury. The Journal of Biological Chemistry, 277, 29181–29186.

    CAS  PubMed  Google Scholar 

  57. Novgorodov, S. A., & Gudz, T. I. (2009). Ceramide and mitochondria in ischemia/reperfusion. Journal of Cardiovascular Pharmacology, 53, 198–208.

    CAS  PubMed  Google Scholar 

  58. Vaseva, A. V., & Moll, U. M. (2009). The mitochondrial p53 pathway. Biochimica et Biophysica Acta, 1787, 414–420.

    CAS  PubMed  Google Scholar 

  59. Marchenko, N. D., Zaika, A., & Moll, U. M. (2000). Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. The Journal of Biological Chemistry, 275, 16202–16212.

    CAS  PubMed  Google Scholar 

  60. Erster, S., Mihara, M., Kim, R. H., Petrenko, O., & Moll, U. M. (2004). In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Molecular and Cellular Biology, 24, 6728–6741.

    CAS  PubMed  Google Scholar 

  61. Park, B. S., Song, Y. S., Yee, S. B., Lee, B. G., Seo, S. Y., Park, Y. C., et al. (2005). Phospho-ser 15–p53 translocates into mitochondria and interacts with Bcl-2 and Bcl-xL in eugenol-induced apoptosis. Apoptosis, 10, 193–200.

    CAS  PubMed  Google Scholar 

  62. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Molecular Cell, 11, 577–590.

    CAS  PubMed  Google Scholar 

  63. Webster, K. A., Discher, D. J., Kaiser, S., Hernandez, O., Sato, B., & Bishopric, N. H. (1999). Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. Journal of Clinical Investigation, 104, 239–252.

    CAS  PubMed  Google Scholar 

  64. Mocanu, M. M., & Yellon, D. M. (2003). p53 down-regulation: A new molecular mechanism involved in ischaemic preconditioning. FEBS Letters, 555, 302–306.

    CAS  PubMed  Google Scholar 

  65. Liu, P., Xu, B., Cavalieri, T. A., & Hock, C. E. (2008). Inhibition of p53 by pifithrin-alpha reduces myocyte apoptosis and leukocyte transmigration in aged rat hearts following 24 hours of reperfusion. Shock, 30, 545–551.

    CAS  PubMed  Google Scholar 

  66. Toth, A., Jeffers, J. R., Nickson, P., Min, J. Y., Morgan, J. P., Zambetti, G. P., et al. (2006). Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia–reperfusion. American Journal of Physiology Heart and Circulatory Physiology, 291, H52–H60.

    CAS  PubMed  Google Scholar 

  67. Adams, J. M., & Cory, S. (2007). Bcl-2-regulated apoptosis: Mechanism and therapeutic potential. Current Opinion in Immunology, 19, 488–496.

    CAS  PubMed  Google Scholar 

  68. Chipuk, J. E., Maurer, U., Green, D. R., & Schuler, M. (2003). Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell, 4, 371–381.

    CAS  PubMed  Google Scholar 

  69. Kumar, D., & Jugdutt, B. I. (2003). Apoptosis and oxidants in the heart. Journal of Laboratory and Clinical Medicine, 142, 288–297.

    CAS  PubMed  Google Scholar 

  70. Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., et al. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 111, 331–342.

    CAS  PubMed  Google Scholar 

  71. Gustafsson, A. B., & Gottlieb, R. A. (2007). Bcl-2 family members and apoptosis, taken to heart. American Journal of Physiology Cell Physiology, 292, C45–C51.

    CAS  PubMed  Google Scholar 

  72. Zhu, L., Yu, Y., Chua, B. H., Ho, Y. S., & Kuo, T. H. (2001). Regulation of sodium-calcium exchange and mitochondrial energetics by Bcl-2 in the heart of transgenic mice. Journal of Molecular and Cellular Cardiology, 33, 2135–2144.

    CAS  PubMed  Google Scholar 

  73. Capano, M., & Crompton, M. (2006). Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochemical Journal, 395, 57–64.

    CAS  PubMed  Google Scholar 

  74. Kirshenbaum, L. A., & de Moissac, D. (1997). The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation, 96, 1580–1585.

    CAS  PubMed  Google Scholar 

  75. Brocheriou, V., Hagege, A. A., Oubenaissa, A., Lambert, M., Mallet, V. O., Duriez, M., et al. (2000). Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury. The Journal of Gene Medicine, 2, 326–333.

    CAS  PubMed  Google Scholar 

  76. Weisleder, N., Taffet, G. E., & Capetanaki, Y. (2004). Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 101, 769–774.

    CAS  PubMed  Google Scholar 

  77. Grover, G. J., Marone, P. A., Koetzner, L., & Seto-Young, D. (2008). Energetic signalling in the control of mitochondrial F1F0 ATP synthase activity in health and disease. International Journal of Biochemistry and Cell Biology, 40, 2698–2701.

    CAS  PubMed  Google Scholar 

  78. Classen, J. B., Mergner, W. J., & Costa, M. (1989). ATP hydrolysis by ischemic mitochondria. Journal of Cellular Physiology, 141, 53–59.

    CAS  PubMed  Google Scholar 

  79. Imahashi, K., Schneider, M. D., Steenbergen, C., & Murphy, E. (2004). Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circulation Research, 95, 734–741.

    CAS  PubMed  Google Scholar 

  80. Maulik, N., Engelman, R. M., Rousou, J. A., Flack, J. E., 3rd, Deaton, D., & Das, D. K. (1999). Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation, 100, II369–II375.

    CAS  PubMed  Google Scholar 

  81. Hattori, R., Hernandez, T. E., Zhu, L., Maulik, N., Otani, H., Kaneda, Y., et al. (2001). An essential role of the antioxidant gene Bcl-2 in myocardial adaptation to ischemia: an insight with antisense Bcl-2 therapy. Antioxidants & Redox Signaling, 3, 403–413.

    CAS  Google Scholar 

  82. Wallace, D. C., Shoffner, J. M., Trounce, I., Brown, M. D., Ballinger, S. W., Corral-Debrinski, M., et al. (1995). Mitochondrial DNA mutations in human degenerative diseases and aging. Biochimica et Biophysica Acta, 1271, 141–151.

    PubMed  Google Scholar 

  83. Yasuda, T., Kamiya, H., Tanaka, Y., & Watanabe, G. (2001). Ultra-short-acting cardioselective beta-blockade attenuates postischemic cardiac dysfunction in the isolated rat heart. European Journal of Cardio-Thoracic Surgery, 19, 647–652.

    CAS  PubMed  Google Scholar 

  84. Sabbah, H. N. (1999). The cellular and physiologic effects of beta blockers in heart failure. Clinical Cardiology, 22(Suppl 5), V16–V20.

    PubMed  Google Scholar 

  85. Kawai, K., Qin, F., Shite, J., Mao, W., Fukuoka, S., & Liang, C. S. (2004). Importance of antioxidant and antiapoptotic effects of beta-receptor blockers in heart failure therapy. American Journal of Physiology Heart and Circulatory Physiology, 287, H1003–H1012.

    CAS  PubMed  Google Scholar 

  86. Nayler, W. G., Ferrari, R., & Williams, A. (1980). Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. American Journal of Cardiology, 46, 242–248.

    CAS  PubMed  Google Scholar 

  87. Vandeplassche, G., Lu, H. R., Wouters, L., Flameng, W., & Borgers, M. (1991). Normothermic ischemic cardiac arrest in the isolated working rabbit heart: effects of dl-nebivolol and atenolol. Basic Research in Cardiology, 86, 21–31.

    CAS  PubMed  Google Scholar 

  88. Carreira, R. S., Monteiro, P., Gon Alves, L. M., & Providencia, L. A. (2006). Carvedilol: Just another Beta-blocker or a powerful cardioprotector? Cardiovascular & Hematological Disorders Drug Targets, 6, 257–266.

    CAS  Google Scholar 

  89. Oliveira, P. J., Goncalves, L., Monteiro, P., Providencia, L. A., & Moreno, A. J. (2005). Are the antioxidant properties of carvedilol important for the protection of cardiac mitochondria? Current Vascular Pharmacology, 3, 147–158.

    CAS  PubMed  Google Scholar 

  90. Yue, T. L., Cheng, H. Y., Lysko, P. G., McKenna, P. J., Feuerstein, R., Gu, J. L., et al. (1992). Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. Journal of Pharmacology and Experimental Therapeutics, 263, 92–98.

    CAS  PubMed  Google Scholar 

  91. Yue, T. L., McKenna, P. J., Ruffolo, R. R., Jr., & Feuerstein, G. (1992). Carvedilol, a new beta-adrenoceptor antagonist and vasodilator antihypertensive drug, inhibits superoxide release from human neutrophils. European Journal of Pharmacology, 214, 277–280.

    CAS  PubMed  Google Scholar 

  92. Spallarossa, P., Garibaldi, S., Altieri, P., Fabbi, P., Manca, V., Nasti, S., et al. (2004). Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. Journal of Molecular and Cellular Cardiology, 37, 837–846.

    CAS  PubMed  Google Scholar 

  93. Feuerstein, G., Yue, T. L., Ma, X., & Ruffolo, R. R. (1998). Novel mechanisms in the treatment of heart failure: Inhibition of oxygen radicals and apoptosis by carvedilol. Progress in Cardiovascular Diseases, 41, 17–24.

    CAS  PubMed  Google Scholar 

  94. Oliveira, P. J., Esteves, T., Rolo, A. P., Palmeira, C. M., & Moreno, A. J. (2004). Carvedilol inhibits the mitochondrial permeability transition by an antioxidant mechanism. Cardiovascular Toxicology, 4, 11–20.

    CAS  PubMed  Google Scholar 

  95. Oliveira, P. J., Bjork, J. A., Santos, M. S., Leino, R. L., Froberg, M. K., Moreno, A. J., et al. (2004). Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicology and Applied Pharmacology, 200, 159–168.

    CAS  PubMed  Google Scholar 

  96. Sgobbo, P., Pacelli, C., Grattagliano, I., Villani, G., & Cocco, T. (2007). Carvedilol inhibits mitochondrial complex I and induces resistance to H2O2 -mediated oxidative insult in H9C2 myocardial cells. Biochimica et Biophysica Acta, 1767, 222–232.

    CAS  PubMed  Google Scholar 

  97. Noguchi, N., Nishino, K., & Niki, E. (2000). Antioxidant action of the antihypertensive drug, carvedilol, against lipid peroxidation. Biochemical Pharmacology, 59, 1069–1076.

    CAS  PubMed  Google Scholar 

  98. Oliveira, P. J., Coxito, P. M., Rolo, A. P., Santos, D. L., Palmeira, C. M., & Moreno, A. J. (2001). Inhibitory effect of carvedilol in the high-conductance state of the mitochondrial permeability transition pore. European Journal of Pharmacology, 412, 231–237.

    CAS  PubMed  Google Scholar 

  99. Oliveira, P. J., Rolo, A. P., Palmeira, C. M., & Moreno, A. J. (2001). Carvedilol reduces mitochondrial damage induced by hypoxanthine/xanthine oxidase: Relevance to hypoxia/reoxygenation injury. Cardiovascular Toxicology, 1, 205–213.

    CAS  PubMed  Google Scholar 

  100. Oliveira, P. J., Santos, D. J., & Moreno, A. J. (2000). Carvedilol inhibits the exogenous NADH dehydrogenase in rat heart mitochondria. Archives of Biochemistry and Biophysics, 374, 279–285.

    CAS  PubMed  Google Scholar 

  101. Nohl, H. (1987). Demonstration of the existence of an organo-specific NADH dehydrogenase in heart mitochondria. European Journal of Biochemistry, 169, 585–591.

    CAS  PubMed  Google Scholar 

  102. Oliveira, P. J., Marques, M. P., Batista de Carvalho, L. A., & Moreno, A. J. (2000). Effects of carvedilol on isolated heart mitochondria: Evidence for a protonophoretic mechanism. Biochemical and Biophysical Research Communications, 276, 82–87.

    CAS  PubMed  Google Scholar 

  103. Kristian, T., & Siesjo, B. K. (1998). Calcium in ischemic cell death. Stroke, 29, 705–718.

    CAS  PubMed  Google Scholar 

  104. Ferrari, R., & Visioli, O. (1991). Calcium channel blockers and ischaemic heart disease: Theoretical expectations and clinical experience. European Heart Journal, 12(Suppl F), 18–24.

    PubMed  Google Scholar 

  105. Mohan, I. K., Khan, M., Wisel, S., Selvendiran, K., Sridhar, A., Carnes, C. A., et al. (2009). Cardioprotection by HO-4038, a novel verapamil derivative, targeted against ischemia and reperfusion-mediated acute myocardial infarction. American journal of Physiology Heart and Circulatory Physiology, 296, H140–H151.

    CAS  PubMed  Google Scholar 

  106. Matlib, M. A., & McFarland, K. L. (1991). Diltiazem inhibition of sodium-induced calcium release. Effects on energy metabolism of heart mitochondria. American Journal of Hypertension, 4, 435S–441S.

    CAS  PubMed  Google Scholar 

  107. Tabouy, L., Chauvet-Monges, A. M., Salducci, M. D., & Crevat, A. (1994). Protective effect of some calcium antagonists against mitochondrial calcium injury. International Journal of Tissue Reactions, 16, 221–228.

    CAS  PubMed  Google Scholar 

  108. Vavrinkova, H., Tutterova, M., Stopka, P., Divisova, J., Kazdova, L., & Drahota, Z. (2001). The effect of captopril on nitric oxide formation and on generation of radical forms of mitochondrial respiratory chain compounds in ischemic rat heart. Physiological Research, 50, 481–489.

    CAS  PubMed  Google Scholar 

  109. Yanagishita, T., Tomita, M., Itoh, S., Mukae, S., Arata, H., Ishioka, H., et al. (1997). Protective effect of captopril on ischemic myocardium. Japanese Circulation Journal, 61, 161–169.

    CAS  PubMed  Google Scholar 

  110. Sanbe, A., Tanonaka, K., Kobayasi, R., & Takeo, S. (1995). Effects of long-term therapy with ACE inhibitors, captopril, enalapril and trandolapril, on myocardial energy metabolism in rats with heart failure following myocardial infarction. Journal of Molecular and Cellular Cardiology, 27, 2209–2222.

    CAS  PubMed  Google Scholar 

  111. Monteiro, P., Oliveira, P. J., Concalves, L., & Providencia, L. A. (2003). Pharmacological modulation of mitochondrial function during ischemia and reperfusion. Revista Portuguesa de Cardiologia, 22, 407–429.

    PubMed  Google Scholar 

  112. Swedberg, K., Held, P., Kjekshus, J., Rasmussen, K., Ryden, L., & Wedel, H. (1992). Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). New England Journal of Medicine, 327, 678–684.

    Article  CAS  PubMed  Google Scholar 

  113. Monteiro, P., Duarte, A. I., Goncalves, L. M., & Providencia, L. A. (2005). Valsartan improves mitochondrial function in hearts submitted to acute ischemia. European Journal of Pharmacology, 518, 158–164.

    CAS  PubMed  Google Scholar 

  114. Singh, B. N. (2006). Amiodarone: A multifaceted antiarrhythmic drug. Current Cardiology Reports, 8, 349–355.

    PubMed  Google Scholar 

  115. Varbiro, G., Toth, A., Tapodi, A., Veres, B., Sumegi, B., & Gallyas, F., Jr. (2003). Concentration dependent mitochondrial effect of amiodarone. Biochemical Pharmacology, 65, 1115–1128.

    CAS  PubMed  Google Scholar 

  116. Spedding, M., Tillement, J. P., Morin, D., & Le Ridant, A. (1999). Medicines interacting with mitochondria: Anti-ischemic effects of trimetazidine. Therapie, 54, 627–635.

    CAS  PubMed  Google Scholar 

  117. Kantor, P. F., Lucien, A., Kozak, R., & Lopaschuk, G. D. (2000). The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circulation Research, 86, 580–588.

    CAS  PubMed  Google Scholar 

  118. Grynberg, A., & Demaison, L. (1996). Fatty acid oxidation in the heart. Journal of Cardiovascular Pharmacology, 28(Suppl 1), S11–S17.

    CAS  PubMed  Google Scholar 

  119. Morin, D., Hauet, T., Spedding, M., & Tillement, J. (2001). Mitochondria as target for antiischemic drugs. Advanced Drug Delivery Reviews, 49, 151–174.

    CAS  PubMed  Google Scholar 

  120. Guarnieri, C., Finelli, C., Zini, M., & Muscari, C. (1997). Effects of trimetazidine on the calcium transport and oxidative phosphorylation of isolated rat heart mitochondria. Basic Research in Cardiology, 92, 90–95.

    CAS  PubMed  Google Scholar 

  121. Veitch, K., Maisin, L., & Hue, L. (1995). Trimetazidine effects on the damage to mitochondrial functions caused by ischemia and reperfusion. American Journal of Cardiology, 76, 25B–30B.

    CAS  PubMed  Google Scholar 

  122. Salloum, F. N., Ockaili, R. A., Wittkamp, M., Marwaha, V. R., & Kukreja, R. C. (2006). Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial K(ATP) channels in rabbits. Journal of Molecular and Cellular Cardiology, 40, 405–411.

    CAS  PubMed  Google Scholar 

  123. Kukreja, R. C., Salloum, F., Das, A., Ockaili, R., Yin, C., Bremer, Y. A., et al. (2005). Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. Vascular Pharmacology, 42, 219–232.

    CAS  PubMed  Google Scholar 

  124. Salloum, F. N., Takenoshita, Y., Ockaili, R. A., Daoud, V. P., Chou, E., Yoshida, K., et al. (2007). Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial K(ATP) channels when administered at reperfusion following ischemia in rabbits. Journal of Molecular and Cellular Cardiology, 42, 453–458.

    CAS  PubMed  Google Scholar 

  125. Fernandes, M. A., Marques, R. J., Vicente, J. A., Santos, M. S., Monteiro, P., Moreno, A. J., et al. (2008). Sildenafil citrate concentrations not affecting oxidative phosphorylation depress H2O2 generation by rat heart mitochondria. Molecular and Cellular Biochemistry, 309, 77–85.

    CAS  PubMed  Google Scholar 

  126. Wang, X., Fisher, P. W., Xi, L., & Kukreja, R. C. (2008). Essential role of mitochondrial Ca2+ -activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. Journal of Molecular and Cellular Cardiology, 44, 105–113.

    PubMed  Google Scholar 

  127. Reffelmann, T., & Kloner, R. A. (2005). Pharmacotherapy of erectile dysfunction: Focus on cardiovascular safety. Expert Opinion on Drug Safety, 4, 531–540.

    CAS  PubMed  Google Scholar 

  128. Garlid, K. D., Paucek, P., Yarov-Yarovoy, V., Murray, H. N., Darbenzio, R. B., D’Alonzo, A. J., et al. (1997). Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circulation Research, 81, 1072–1082.

    CAS  PubMed  Google Scholar 

  129. Baines, C. P., Liu, G. S., Birincioglu, M., Critz, S. D., Cohen, M. V., & Downey, J. M. (1999). Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. American Journal of Physiology, 276, H1361–H1368.

    CAS  PubMed  Google Scholar 

  130. Takashi, E., Wang, Y., & Ashraf, M. (1999). Activation of mitochondrial K(ATP) channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circulation Research, 85, 1146–1153.

    CAS  PubMed  Google Scholar 

  131. Pasdois, P., Beauvoit, B., Tariosse, L., Vinassa, B., Bonoron-Adele, S., & Dos Santos, P. (2008). Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia–reperfusion: A study on Langendorff-perfused rat hearts using optic fibers. American Journal of Physiology Heart and Circulatory Physiology, 294, H2088–H2097.

    CAS  PubMed  Google Scholar 

  132. Ohnuma, Y., Miura, T., Miki, T., Tanno, M., Kuno, A., Tsuchida, A., et al. (2002). Opening of mitochondrial K(ATP) channel occurs downstream of PKC-epsilon activation in the mechanism of preconditioning. American Journal of Physiology Heart and Circulatory Physiology, 283, H440–H447.

    CAS  PubMed  Google Scholar 

  133. Korge, P., Honda, H. M., & Weiss, J. N. (2002). Protection of cardiac mitochondria by diazoxide and protein kinase C: Implications for ischemic preconditioning. Proceedings of the National Academy of Sciences of the United States of America, 99, 3312–3317.

    CAS  PubMed  Google Scholar 

  134. Minatoguchi, S., Wang, N., Uno, Y., Arai, M., Hashimoto, K., Hashimoto, Y., et al. (2001). Combination of miglitol, an anti-diabetic drug, and nicorandil markedly reduces myocardial infarct size through opening the mitochondrial K(ATP) channels in rabbits. British Journal of Pharmacology, 133, 1041–1046.

    CAS  PubMed  Google Scholar 

  135. Ozcan, C., Bienengraeber, M., Dzeja, P. P., & Terzic, A. (2002). Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. American Journal of Physiology Heart and Circulatory Physiology, 282, H531–H539.

    CAS  PubMed  Google Scholar 

  136. Iwai, T., Tanonaka, K., Motegi, K., Inoue, R., Kasahara, S., & Takeo, S. (2002). Nicorandil preserves mitochondrial function during ischemia in perfused rat heart. European Journal of Pharmacology, 446, 119–127.

    CAS  PubMed  Google Scholar 

  137. Sato, T., Sasaki, N., O’Rourke, B., & Marban, E. (2000). Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. Journal of the American College of Cardiology, 35, 514–518.

    CAS  PubMed  Google Scholar 

  138. Halestrap, A. P., & Pasdois, P. (2009). The role of the mitochondrial permeability transition pore in heart disease. Biochimica et Biophysica Acta, 1787, 1402–1415.

    CAS  PubMed  Google Scholar 

  139. Halestrap, A. P., & Davidson, A. M. (1990). Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis–trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochemical Journal, 268, 153–160.

    CAS  PubMed  Google Scholar 

  140. Halestrap, A. P., Clarke, S. J., & Javadov, S. A. (2004). Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovascular Research, 61, 372–385.

    CAS  PubMed  Google Scholar 

  141. Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 434, 658–662.

    CAS  PubMed  Google Scholar 

  142. Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., et al. (2005). Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature, 434, 652–658.

    CAS  PubMed  Google Scholar 

  143. Halestrap, A. P., Connern, C. P., Griffiths, E. J., & Kerr, P. M. (1997). Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Molecular and Cellular Biochemistry, 174, 167–172.

    CAS  PubMed  Google Scholar 

  144. Magnasco, A., Rossi, A., Catarsi, P., Gusmano, R., Ginevri, F., Perfumo, F., et al. (2008). Cyclosporin and organ specific toxicity: Clinical aspects, pharmacogenetics and perspectives. Current Clinical Pharmacology, 3, 166–173.

    CAS  PubMed  Google Scholar 

  145. Ferrari, R., Merli, E., Cicchitelli, G., Mele, D., Fucili, A., & Ceconi, C. (2004). Therapeutic effects of l-carnitine and propionyl-l-carnitine on cardiovascular diseases: A review. Annals of the New York Academy of Sciences, 1033, 79–91.

    CAS  PubMed  Google Scholar 

  146. Andrieu-Abadie, N., Jaffrezou, J. P., Hatem, S., Laurent, G., Levade, T., & Mercadier, J. J. (1999). l-carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: Role of inhibition of ceramide generation. Faseb Journal, 13, 1501–1510.

    CAS  PubMed  Google Scholar 

  147. Mutomba, M. C., Yuan, H., Konyavko, M., Adachi, S., Yokoyama, C. B., Esser, V., et al. (2000). Regulation of the activity of caspases by l-carnitine and palmitoylcarnitine. FEBS Letters, 478, 19–25.

    CAS  PubMed  Google Scholar 

  148. Gao, L., Laude, K., & Cai, H. (2008). Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Veterinary Clinics of North America Small Animal Practice, 38, 137–155.

    Google Scholar 

  149. Yamawaki, M., Sasaki, N., Shimoyama, M., Miake, J., Ogino, K., Igawa, O., et al. (2004). Protective effect of edaravone against hypoxia-reoxygenation injury in rabbit cardiomyocytes. British Journal of Pharmacology, 142, 618–626.

    CAS  PubMed  Google Scholar 

  150. Watanabe, T., Yuki, S., Egawa, M., & Nishi, H. (1994). Protective effects of MCI-186 on cerebral ischemia: Possible involvement of free radical scavenging and antioxidant actions. Journal of Pharmacology and Experimental Therapeutics, 268, 1597–1604.

    CAS  PubMed  Google Scholar 

  151. Rajesh, K. G., Sasaguri, S., Suzuki, R., & Maeda, H. (2003). Antioxidant MCI-186 inhibits mitochondrial permeability transition pore and upregulates Bcl-2 expression. American Journal of Physiology Heart and Circulatory Physiology, 285, H2171–H2178.

    CAS  PubMed  Google Scholar 

  152. Yamazaki, K., Miwa, S., Toyokuni, S., Nemoto, S., Oriyanhan, W., Takaba, K., et al. (2009). Effect of edaravone, a novel free radical scavenger, supplemented to cardioplegia on myocardial function after cardioplegic arrest: in vitro study of isolated rat heart. Heart and Vessels, 24, 228–235.

    PubMed  Google Scholar 

  153. Mallet, R. T., Sun, J., Knott, E. M., Sharma, A. B., & Olivencia-Yurvati, A. H. (2005). Metabolic cardioprotection by pyruvate: Recent progress. Experimental Biology and Medicine (Maywood), 230, 435–443.

    CAS  Google Scholar 

  154. Mallet, R. T., & Sun, J. (1999). Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics. Cardiovascular Research, 42, 149–161.

    CAS  PubMed  Google Scholar 

  155. Kerr, P. M., Suleiman, M. S., & Halestrap, A. P. (1999). Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. American Journal of Physiology, 276, H496–H502.

    CAS  PubMed  Google Scholar 

  156. Hamilton, K. L. (2007). Antioxidants and cardioprotection. Medicine and Science in Sports and Exercise, 39, 1544–1553.

    CAS  PubMed  Google Scholar 

  157. Pain, T., Yang, X. M., Critz, S. D., Yue, Y., Nakano, A., Liu, G. S., et al. (2000). Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circulation Research, 87, 460–466.

    CAS  PubMed  Google Scholar 

  158. Adlam, V. J., Harrison, J. C., Porteous, C. M., James, A. M., Smith, R. A., Murphy, M. P., et al. (2005). Targeting an antioxidant to mitochondria decreases cardiac ischemia–reperfusion injury. Faseb Journal, 19, 1088–1095.

    CAS  PubMed  Google Scholar 

  159. Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., et al. (2008). Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Mosc), 73, 1288–1299.

    CAS  Google Scholar 

  160. Fink, M. P., Macias, C. A., Xiao, J., Tyurina, Y. Y., Delude, R. L., Greenberger, J. S., et al. (2007). Hemigramicidin-TEMPO conjugates: novel mitochondria-targeted antioxidants. Critical Care Medicine, 35, S461–S467.

    CAS  PubMed  Google Scholar 

  161. James, A. M., Cocheme, H. M., & Murphy, M. P. (2005). Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing. Mechanisms of Ageing and Development, 126, 982–986.

    CAS  PubMed  Google Scholar 

  162. Giacomo, C. G., & Antonio, M. (2007). Melatonin in cardiac ischemia/reperfusion-induced mitochondrial adaptive changes. Cardiovascular Hematological Disorders Drug Targets, 7, 163–169.

    CAS  PubMed  Google Scholar 

  163. Acuna-Castroviejo, D., Escames, G., Rodriguez, M. I., & Lopez, L. C. (2007). Melatonin role in the mitochondrial function. Front Bioscience, 12, 947–963.

    CAS  Google Scholar 

  164. Ceyran, H., Narin, F., Narin, N., Akgun, H., Ceyran, A. B., Ozturk, F., et al. (2008). The effect of high dose melatonin on cardiac ischemia- reperfusion injury. Yonsei Medical Journal, 49, 735–741.

    CAS  PubMed  Google Scholar 

  165. Petrosillo, G., Di Venosa, N., Pistolese, M., Casanova, G., Tiravanti, E., Colantuono, G., et al. (2006). Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia- reperfusion: Role of cardiolipin. Faseb Journal, 20, 269–276.

    CAS  PubMed  Google Scholar 

  166. Ostadal, B., Netuka, I., Maly, J., Besik, J., & Ostadalova, I. (2009). Gender differences in cardiac ischemic injury and protection—experimental aspects. Experimental Biology and Medicine (Maywood), 234, 1011–1019.

    CAS  Google Scholar 

  167. Booth, E. A., & Lucchesi, B. R. (2008). Estrogen-mediated protection in myocardial ischemia–reperfusion injury. Cardiovascular Toxicology, 8, 101–113.

    CAS  PubMed  Google Scholar 

  168. Xu, Y., Arenas, I. A., Armstrong, S. J., Plahta, W. C., Xu, H., & Davidge, S. T. (2006). Estrogen improves cardiac recovery after ischemia/reperfusion by decreasing tumor necrosis factor-alpha. Cardiovascular Research, 69, 836–844.

    CAS  PubMed  Google Scholar 

  169. Duckles, S. P., Krause, D. N., Stirone, C., & Procaccio, V. (2006). Estrogen and mitochondria: A new paradigm for vascular protection? Molecular Interventions, 6, 26–35.

    PubMed  Google Scholar 

  170. Morkuniene, R., Jekabsone, A., & Borutaite, V. (2002). Estrogens prevent calcium-induced release of cytochrome c from heart mitochondria. FEBS Letters, 521, 53–56.

    CAS  PubMed  Google Scholar 

  171. Yang, S. H., Liu, R., Perez, E. J., Wen, Y., Stevens, S. M., Jr., Valencia, T., et al. (2004). Mitochondrial localization of estrogen receptor beta. Proceedings of the National Academy of Sciences of the United States of America, 101, 4130–4135.

    CAS  PubMed  Google Scholar 

  172. Morkuniene, R., Arandarcikaite, O., & Borutaite, V. (2006). Estradiol prevents release of cytochrome c from mitochondria and inhibits ischemia-induced apoptosis in perfused heart. Experimental Gerontology, 41, 704–708.

    CAS  PubMed  Google Scholar 

  173. Sugishita, K., Li, F., Su, Z., & Barry, W. H. (2003). Anti-oxidant effects of estrogen reduce [Ca2+]i during metabolic inhibition. Journal of Molecular and Cellular Cardiology, 35, 331–336.

    CAS  PubMed  Google Scholar 

  174. Wang, Q. D., Pernow, J., Sjoquist, P. O., & Ryden, L. (2002). Pharmacological possibilities for protection against myocardial reperfusion injury. Cardiovascular Research, 55, 25–37.

    CAS  PubMed  Google Scholar 

  175. Berthiaume, J. M., Oliveira, P. J., Fariss, M. W., & Wallace, K. B. (2005). Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovascular Toxicology, 5, 257–267.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratory is supported by the Portuguese Foundation for Science and Technology (SFRH/BD/31655/2006 to Marco G. Alves, POCI/SAU-OBS/55802/2004 to Rui A. Carvalho).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, N.G., Alves, M.G., Carvalho, R.A. et al. Mitochondrial Involvement in Cardiac Apoptosis During Ischemia and Reperfusion: Can We Close the Box?. Cardiovasc Toxicol 9, 211–227 (2009). https://doi.org/10.1007/s12012-009-9055-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-009-9055-1

Keywords

Navigation