Skip to main content
Log in

Influence of Infrasound Exposure on the Whole L-type Calcium Currents in Rat Ventricular Myocytes

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

This study was designed to examine the effect of infrasound exposure (5 Hz at 130 dB) on whole-cell L-type Ca2+ currents (WLCC) in rat ventricular myocytes and the underlying mechanism(s) involved. Thirty-two adult Sprague-Dawley rats were randomly assigned to infrasound exposure and control groups. [Ca2+]i, WLCC, mRNA expression of the a1c subunit of L-type Ca2+ channels (LCC), and SERCA2 protein were examined on day 1, 7, and 14 after initiation of infrasound exposure. Fluo-3/AM fluorescence and the laser scanning confocal microscope techniques were used to measure [Ca2+]i in freshly isolated ventricular myocytes. The Ca2+ fluorescence intensity (FI), denoting [Ca2+]i in cardiomyocytes, was significantly elevated in a time-dependent manner in the exposure groups. There was a significant increase in WLCC in the 1-day group and a further significant increase in the 7- and 14-day groups. LCC mRNA expression measured by RT-PCR revealed a significant rise in the 1-day group and a significant additional rise in the 7- and 14-day groups compared with control group. SERCA2 expression was significantly upregulated in the 1-day group followed by an overt decrease in the 7- and 14-day groups. Prolonged exposure of infrasound altered WLCC in rat cardiomyocytes by shifting the steady-state inactivation curves to the right (more depolarized direction) without altering the slope and biophysical properties of I Ca,L. Taken together, our data suggest that changes in [Ca2+]I levels as well as expression of LCC and SERCA2 may contribute to the infrasound exposure-elicited cardiac response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pei, Z., Sang, H., Li, R., Xiao, P., He, J., Zhuang, Z., et al. (2007). Infrasound-induced hemodynamics, ultrastructure, and molecular changes in the rat myocardium. Environmental Toxicology, 22, 169–175. doi:10.1002/tox.20244.

    Article  PubMed  CAS  Google Scholar 

  2. Nekhoroshe, A. S., & Glinchikov, V. V. (1991). Morphofunctional changes in the myocardium under exposure to infrasound. NVB Noise and Vibration Bulletin, 12, 15–17.

    Google Scholar 

  3. Chen, J. Z., Pei, Z. H., Zhu, M. Z., Zhuang, Z. Q., Pei, J. M., & Liu, J. (2005). Effects of infrasound of 8 Hz at 90 dB on the ultra-structure of myocardium. Chinese Heart Journal, 17, 216–217.

    Google Scholar 

  4. Yamasumi, Y., Shiraishi, T., Miyashita, K., Kuroda, M., Luo, W., & Taniuchi, T. S. (1994). The pituitary adrenocortical response in rats exposed to fluctuating infrasound. Journal of Low Frequency Noise and Vibration, 13, 89–93.

    Google Scholar 

  5. Slarve, R. N., & Johnson, D. L. (1975). Human whole body exposure to infrasound. Aviation, Space and Environmental Medicine, 46, 428–431.

    CAS  Google Scholar 

  6. Liu, Z. H., Chen, J. Z., Tang, Y., Chen, D., Ding, G. R., Liu, J., et al. (2004). Effects of infrasound on changes of intracellular calcium ion concentration and on expression of RyRs in hippocampus of rat brain. Journal of Low Frequency Noise and Vibration, 23, 159–165. doi:10.1260/0263092042863618.

    Article  Google Scholar 

  7. Bers, D. M., & Perez-Reyes, E. (1999). Ca2+ channels in cardiac myocytes: Structure and function in Ca influx and intracellular Ca2+ release. Cardiovascular Research, 42, 339–360. doi:10.1016/S0008-6363(99)00038-3.

    Article  PubMed  CAS  Google Scholar 

  8. Maclennan, D. H. (1970). Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. The Journal of Biological Chemistry, 245, 4508–4518.

    PubMed  CAS  Google Scholar 

  9. Walsh, K. B., & Long, K. J. (1992). Inhibition of heart calcium and chloride currents by sodium iodide. Specific attenuation in cAMP-dependent protein kinase-mediated regulation. The Journal of General Physiology, 100, 847–865. doi:10.1085/jgp.100.5.847.

    Article  PubMed  CAS  Google Scholar 

  10. Walsh, K. B., & Parks, G. E. (2002). Changes in cardiac myocyte morphology alter the properties of voltage-gated ion channels. Cardiovascular Research, 55, 64–75. doi:10.1016/S0008-6363(02)00403-0.

    Article  PubMed  CAS  Google Scholar 

  11. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, J. (1981). Improved patch-clamp techniques for high resolution current recordings from cells and cell-free membrane patches. Pflügers Archiv, 391, 85–100. doi:10.1007/BF00656997.

    Article  PubMed  CAS  Google Scholar 

  12. Wijetunge, S., Lymn, J. S., & Hughes, A. D. (2000). Effects of protein tyrosine kinase inhibitors on voltage-operated calcium channel currents in vascular smooth muscle cells and pp60 (c-src) kinase activity. British Journal of Pharmacology, 129, 1347–1354. doi:10.1038/sj.bjp.0703186.

    Article  PubMed  CAS  Google Scholar 

  13. Inui, M., Wang, S., Saito, A., & Fleischer, S. (1998). Characterization of junctional and longitudinal sarcoplasmic reticulum from heart muscle. The Journal of Biological Chemistry, 263, 10843–10850.

    Google Scholar 

  14. Sánchez, G., Hidalgo, C., & Donoso, P. (2003). Kinetic studies of calcium-induced calcium release in cardiac sarcoplasmic reticulum vesicles. Biophysical Journal, 84, 2319–2330. doi:10.1016/S0006-3495(03)75037-1.

    Article  PubMed  Google Scholar 

  15. Zhuang, Z. Q., Pei, Z. H., & Chen, J. Z. (2007). Infrasound-induced changes on sexual behavior in male rats and some underlying mechanism. Environmental Toxicology and Pharmacology, 23, 111–114. doi:10.1016/j.etap.2006.07.009.

    Article  CAS  Google Scholar 

  16. Fei, Z., Zhang, X., Li, Z. G., Liu, E. Y., Bai, H. M., Chen, J. Z., et al. (2001). The changes and significance of TXA2 and PGI2 metabolism after rat infrasonic brain damage. Journal of Low Frequency Noise and Vibration, 20, 33–37. doi:10.1260/0263092011492966.

    Article  Google Scholar 

  17. Fei, Z., Zhang, X., Wang, X. F., Li, Z. G., Lu, L., Liu, X. Z., et al. (2000). The changes of rat blood-brain barrier permeability and expression of heat shock protein 70 after infrasonic damage. Journal of Low Frequency Noise and Vibration, 19, 93–99. doi:10.1260/0263092001492840.

    Article  Google Scholar 

  18. Hudman, D., Rainbow, R. D., Lawrence, C. L., & Standen, N. B. (2002). The origin of calcium overload in rat cardiac myocytes following metabolic inhibition with 2,4-dinitrophenol. Journal of Molecular and Cellular Cardiology, 34, 859–871. doi:10.1006/jmcc.2002.2024.

    Article  PubMed  CAS  Google Scholar 

  19. Xia, M., Salat, J. J., Figueroa, D. J., Lawlor, A. M., Liang, H. A., Liu, Y., et al. (2004). Functional expression of L- and T-type Ca2+ channels in murine HL-1 cells. Journal of Molecular and Cellular Cardiology, 36, 111–119. doi:10.1016/j.yjmcc.2003.10.007.

    Article  PubMed  CAS  Google Scholar 

  20. Andrzej, M., Janczewski, H. A., & Spurgeon, E. G. (2002). Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation. Journal of Molecular and Cellular Cardiology, 34, 641–648. doi:10.1006/jmcc.2002.2004.

    Article  Google Scholar 

  21. Thomas, N., Rana, M. T., Ken-ichi, K., & Naranjan, S. D. (2002). Ca2+-overload inhibits the cardiac SR Ca2+–calmodulin protein kinase activity. Biochemical and Biophysical Research Communications, 293, 727–732. doi:10.1016/S0006-291X(02)00287-5.

    Article  Google Scholar 

  22. Xu, A. T., Netticadan, D. L., & Jones, N. N. (1999). Serine phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase in the intact beating rabbit heart. Biochemical and Biophysical Research Communications, 264, 241–246. doi:10.1006/bbrc.1999.1491.

    Article  PubMed  CAS  Google Scholar 

  23. Konrad, F. F., Birgit, B., Erland, E., & Robert, H. G. (2003). Sarcoplasmic reticulum Ca-ATPase modulates cardiac contraction and relaxation. Cardiovascular Research, 57, 20–27. doi:10.1016/S0008-6363(02)00694-6.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant: 30870579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmei Yan.

Additional information

Zhaohui Pei and Zhiqiang Zhuang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, Z., Zhuang, Z., Xiao, P. et al. Influence of Infrasound Exposure on the Whole L-type Calcium Currents in Rat Ventricular Myocytes. Cardiovasc Toxicol 9, 70–77 (2009). https://doi.org/10.1007/s12012-009-9037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-009-9037-3

Keywords

Navigation