Skip to main content

Advertisement

Log in

Cardiac-Targeted Transgenic Mutant Mitochondrial Enzymes: mtDNA Defects, Antiretroviral Toxicity and Cardiomyopathy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Mitochondrial (mt) DNA biogenesis is critical to cardiac contractility. DNA polymerase gamma (Pol γ) replicates mtDNA, whereas thymidine kinase 2 (TK2) monophosphorylates pyrimidines intramitochondrially. Point mutations in POLG and TK2 result in clinical diseases associated with mtDNA depletion and organ dysfunction. Pyrimidine analogs (NRTIs) inhibit Pol γ and mtDNA replication. Cardiac “dominant negative” murine transgenes (TGs; Pol γ Y955C, and TK2 H121N or I212N) defined the role of each in the heart. mtDNA abundance, histopathological features, histochemistry, mitochondrial protein abundance, morphometry, and echocardiography were determined for TGs in “2 × 2” studies with or without pyrimidine analogs. Cardiac mtDNA abundance decreased in Y955C TGs (∼50%) but increased in H121N and I212N TGs (20–70%). Succinate dehydrogenase (SDH) increased in hearts of all mutants. Ultrastructural changes occurred in Y955C and H121N TGs. Histopathology demonstrated hypertrophy in H121N, LV dilation in I212N, and both hypertrophy and dilation in Y955C TGs. Antiretrovirals increased LV mass (≈50%) for all three TGs which combined with dilation indicates cardiomyopathy. Taken together, these studies demonstrate three manifestations of cardiac dysfunction that depend on the nature of the specific mutation and antiretroviral treatment. Mutations in genes for mtDNA biogenesis increase risk for defective mtDNA replication, leading to LV hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kagunim, L. S. (2004). DNA polymerase gamma, the mitochondrial replicase. Annual Review of Biochemistry, 73, 293–320.

    Article  CAS  Google Scholar 

  2. Graziewicz, M. A., Longley, M. J., & Copeland, W. C. (2006). DNA polymerase gamma in mitochondrial DNA replication and repair. Chemical Reviews, 106, 383–405.

    Article  PubMed  CAS  Google Scholar 

  3. Horvath, R., Hudson, G., Ferrari, G., Futterer, N., Ahola, S., Lamantea, E., Prokisch, H., Lochmuller, H., McFarland, R., Ramesh, V., Klopstock, T., Freisinger, P., Salvi, F., Mayr JA, Santer, R., Tesarova, M., Zeman, J., Udd, B., Taylor RW, Turnbull, D., Hanna, M., Fialho, D., Suomalainen, A., Zeviani, M., & Chinnery, P. F. (2006). Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain, 129, 1674–1684.

    Article  PubMed  Google Scholar 

  4. Eriksson, S., Munch-Petersen, B., Johansson, K., & Eklund, H. (2002). Structure and function of cellular deoxyribonucleoside kinases. Cellular and Molecular Life Sciences, 59, 1327–1346.

    Article  PubMed  CAS  Google Scholar 

  5. Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., & Elpeleg, O. (2001). Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature Genetics, 29, 342–344.

    Article  PubMed  CAS  Google Scholar 

  6. Saada, A., Shaag, A., & Elpeleg, O. (2003). mtDNA depletion myopathy: Elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency. Molecular Genetics and Metabolism, 79, 1–5.

    Article  PubMed  CAS  Google Scholar 

  7. Vivet-Boudou, V., Didierjean, J., Isel, C., & Marquet, R. (2006). Nucleoside and nucleotide inhibitors of HIV-1 replication. Cellular and Molecular Life Sciences, 63, 163–186.

    Article  PubMed  CAS  Google Scholar 

  8. Mitsuya, H., Weinhold, K. J, Furman, P. A, St Clair, M. H., Lehrman, S. N., Gallo, R. C., Bolognesi, D., Barry, D. W., & Broder, S. (1985). 3’-Azido-3’-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proceedings of the National Academy of Sciences of the United States of America, 82, 7096–7100.

    Article  PubMed  CAS  Google Scholar 

  9. Lewis, W. (2005). Nucleoside reverse transcriptase inhibitors, mitochondrial DNA and AIDS therapy. Antiviral Theraphy, 10, Suppl 2:M13–M27.

    CAS  Google Scholar 

  10. Lewis, W., Day, B. J., & Copeland, W. C. (2003). Mitochondrial toxicity of nrti antiviral drugs: An integrated cellular perspective. Nature Reviews. Drug Discovery, 2, 812–822.

    Article  PubMed  CAS  Google Scholar 

  11. Lewis, W., & Dalakas, M. C. (1995). Mitochondrial toxicity of antiviral drugs. Nature Medicine, 1, 417–422.

    Article  PubMed  CAS  Google Scholar 

  12. Kohler JJ, & Lewis, W. (2007). A brief overview of mechanisms of mitochondrial toxicity from NRTIs. Environmental and Molecular Mutagenesis, 48, 166–172.

    Article  PubMed  CAS  Google Scholar 

  13. Lewis, W., Kohler, J. J., Hosseini, S. H., Haase, C. P., Copeland, W. C., Bienstock, R. J., Ludaway, T., McNaught, J., Russ, R., Stuart, T., & Santoianni, R. (2006). Antiretroviral nucleosides, deoxynucleotide carrier and mitochondrial DNA: Evidence supporting the DNA pol gamma hypothesis. Aids, 20, 675–684.

    Article  PubMed  CAS  Google Scholar 

  14. Subramaniam, A., Jones W. K., Gulick, J., Wert, S., Neumann, J., & Robbins, J. (1991). Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. Journal of Biological Chemistry, 266, 24613–24620.

    PubMed  CAS  Google Scholar 

  15. Lewis, W., Day, B. J., Kohler, J. J., Hosseini, S. H., Chan, S. S., Green, E. C., Haase, C. P., Keebaugh, E. S., Long, R., Ludaway, T., Russ, R., Steltzer, J., Tioleco, N., Santoianni, R., & Copeland, W. C. (2007). Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Laboratory Investigation, 87, 326–335.

    PubMed  CAS  Google Scholar 

  16. Hosseini, S. H., Kohler, J. J., Haase, C. P., Tioleco, N., Stuart, T., Keebaugh, E., Ludaway, T., Russ, R., Green, E., Long, R., Wang, L., Eriksson, S., & Lewis, W. (2007). Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: Transgenic TK2, mtDNA, and antiretrovirals. American Journal of Pathology, 170, 865–874.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, L., & Eriksson, S. (2000). Cloning and characterization of full-length mouse thymidine kinase 2: The N-terminal sequence directs import of the precursor protein into mitochondria. Biochemical Journal, 351 Pt 2, 469–476.

    Article  PubMed  CAS  Google Scholar 

  18. Lewis, W., Miller, Y. K., Haase, C. P., Ludaway, T., McNaught, J., Russ, R., Steltzer, J., Folpe, A., Long, R., & Oshinski, J. (2005). HIV viral protein R causes atrial cardiomyocyte mitosis, mesenchymal tumor, dysrhythmia, and heart failure. Laboratory Investigation, 85, 182–192.

    Article  PubMed  CAS  Google Scholar 

  19. Cote, H. C., Yip, B., Asselin, J. J., Chan, J. W., Hogg, R. S., Harrigan, P. R., O’Shaughnessy, M. V., & Montaner, J. S. (2003). Mitochondrial: Nuclear DNA ratios in peripheral blood cells from human immunodeficiency virus (HIV)-infected patients who received selected HIV antiretroviral drug regimens. Journal of Infectious Diseases, 187, 1972–1976.

    Article  PubMed  CAS  Google Scholar 

  20. Hosseini, S. H., Kohler, J. J., Haase, C. P., Tioleco, N., Stuart, T., Keebaugh, E., Ludaway, T., Russ, R., Green, E., Long, R., Wang, L., Eriksson, S., & Lewis, W. (2007). Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance. American Journal of Pathology, 170, 865–874.

    Article  PubMed  CAS  Google Scholar 

  21. Sciacco, M., & Bonilla, E. (1996). Cytochemistry and immunocytochemistry of mitochondria in tissue sections. Methods Enzymol, 264, 509–521.

    Article  PubMed  CAS  Google Scholar 

  22. Lewis, W., Haase, C. P., Raidel, S. M., Russ, R. B., Sutliff, R. L., Hoit, B. D., & Samarel, A. M. (2001). Combined antiretroviral therapy causes cardiomyopathy and elevates plasma lactate in transgenic AIDS mice. Laboratory Investigation, 81, 1527–1536.

    PubMed  CAS  Google Scholar 

  23. Dalakas, M. C., Illa, I., Pezeshkpour, G. H., Laukaitis, J. P., Cohen, B., & Griffin, J. L. (1990). Mitochondrial myopathy caused by long-term zidovudine therapy [see comments]. New England Journal of Medicine, 322, 1098–1105.

    PubMed  CAS  Google Scholar 

  24. Golden, K. L., Marsh, J. D., & Jiang, Y. (2004). Testosterone regulates mRNA levels of calcium regulatory proteins in cardiac myocytes. Hormone and Metabolic Research, 36, 197–202.

    Article  PubMed  CAS  Google Scholar 

  25. Rosenkranz-Weiss, P., Tomek, R. J., Mathew, J., & Eghbali, M. (1994). Gender-specific differences in expression of mRNAs for functional and structural proteins in rat ventricular myocardium. Journal of Molecular and Cellular Cardiology, 26, 261–270.

    Article  PubMed  CAS  Google Scholar 

  26. Llamas, B., Belanger, S., Picard, S., & Deschepper, C. F. (2007). Cardiac mass and cardiomyocyte size are governed by different genetic loci on either autosomes or chromosome Y in recombinant inbred mice. Physiol Genomics, 31, 176–182.

    Article  PubMed  CAS  Google Scholar 

  27. Lewis, W., Grupp, I. L., Grupp, G., Hoit, B., Morris, R., Samarel, A. M., Bruggeman, L., & Klotman, P. (2000). Cardiac dysfunction occurs in the HIV-1 transgenic mouse treated with zidovudine. Laboratory Investigation, 80, 187–197.

    Article  PubMed  CAS  Google Scholar 

  28. Sebastiani, M., Giordano, C., Nediani, C., Travaglini, C., Borchi, E., Zani, M., Feccia, M., Mancini, M., Petrozza, V., Cossarizza, A., Gallo, P., Taylor, R. W, & d’Amati, G. (2007). Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. Journal of the American College of Cardiology, 50, 1362–1369.

    Article  PubMed  CAS  Google Scholar 

  29. Barth, E., Stammler, G., Speiser, B., & Schaper, J. (1992). Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. Journal of Molecular and Cellular Cardiology, 24, 669–681.

    Article  PubMed  CAS  Google Scholar 

  30. Bishop, J. B., Witt, K. L., Tice, R. R., & Wolfe, G. W. (2004). Genetic damage detected in CD-1 mouse pups exposed perinatally to 3’-azido-3’-deoxythymidine and dideoxyinosine via maternal dosing, nursing, and direct gavage. Environmental and Molecular Mutagenesis, 43, 3–9.

    Article  PubMed  CAS  Google Scholar 

  31. Raidel, S. M., Haase, C., Jansen, N. R., Russ, R. B., Sutliff, R. L., Velsor, L. W., Day, B. J., Hoit, B. D., Samarel, A. M., & Lewis, W. (2002). Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1672–H1678.

    PubMed  CAS  Google Scholar 

  32. Katz, A. M. (2003). Heart failure: A hemodynamic disorder complicated by maladaptive proliferative responses. Journal of cellular and molecular medicine, 7, 1–10.

    Article  PubMed  CAS  Google Scholar 

  33. McComsey, G., & Lonergan, J. T. (2004). Mitochondrial dysfunction: Patient monitoring and toxicity management. Journal of Acquired Immune Deficiency Syndromes, 37, S30–S35.

    Article  PubMed  CAS  Google Scholar 

  34. Barthelemy, C., Ogier de Baulny, H., Diaz, J., Cheval, M. A., Frachon, P., Romero, N., Goutieres, F., Fardeau, M., & Lombes, A. (2001). Late-onset mitochondrial DNA depletion: DNA copy number, multiple deletions, and compensation. Annals of Neurology, 49, 607–617.

    Article  PubMed  CAS  Google Scholar 

  35. Miro, O., Lopez, S., Rodriguez de la Concepcion, M., Martinez, E., Pedrol, E., Garrabou, G., Giralt, M., Cardellach, F., Gatell, J. M., Vilarroya, F., & Casademont, J. (2004). Upregulatory mechanisms compensate for mitochondrial DNA depletion in asymptomatic individuals receiving stavudine plus didanosine. Journal of Acquired Immune Deficiency Syndromes, 37, 1550–1555.

    Article  PubMed  CAS  Google Scholar 

  36. d’Amati, G., & Lewis, W. (1994). Zidovudine causes early increases in mitochondrial ribonucleic acid abundance and induces ultrastructural changes in cultured mouse muscle cells. Laboratory Investigation, 71, 879–884.

    PubMed  CAS  Google Scholar 

  37. Divi, R. L., Haverkos, K. J., Humsi, J. A., Shockley, M. E., Thamire, C., Nagashima, K., Olivero, O. A., & Poirier, M. C. (2007). Morphological and molecular course of mitochondrial pathology in cultured human cells exposed long-term to Zidovudine. Environmental and Molecular Mutagenesis, 48(3–4), 179–189.

    Article  PubMed  CAS  Google Scholar 

  38. Abu-Amero, K. K., & Bosley, T. M. (2006). Increased relative mitochondrial DNA content in leucocytes of patients with NAION. British Journal of Ophthalmology, 90, 823–825.

    Article  PubMed  CAS  Google Scholar 

  39. Jiang, W. W., Masayesva, B., Zahurak, M., Carvalho, A. L., Rosenbaum, E., Mambo, E., Zhou, S., Minhas, K., Benoit, N., Westra, W. H, Alberg, A., Sidransky, D., Koch, W., & Califano, J. (2005). Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clinical Cancer Research, 11, 2486–2491.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, L., Saada, A., & Eriksson, S. (2003). Kinetic properties of mutant human thymidine kinase 2 suggest a mechanism for mitochondrial DNA depletion myopathy. Journal of Biological Chemistry, 278, 6963–6968.

    Article  PubMed  CAS  Google Scholar 

  41. Bourdon, A., Minai, L., Serre, V., Jais, J. P., Sarzi, E., Aubert, S., Chretien, D., de Lonlay, P., Paquis-Flucklinger, V., Arakawa, H., Nakamura, Y., Munnich, A., & Rotig, A. (2007). Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nature Genetics, 39, 776–780.

    Article  PubMed  CAS  Google Scholar 

  42. Lim, S. E., & Copeland, W. C. (2001). Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase gamma. Journal of Biological Chemistry, 276, 23616–23623.

    Article  PubMed  CAS  Google Scholar 

  43. Ferraro, P., Nicolosi, L., Bernardi, P., Reichard, P., & Bianchi, V. (2006). Mitochondrial deoxynucleotide pool sizes in mouse liver and evidence for a transport mechanism for thymidine monophosphate. Proceedings of the National Academy of Sciences of the United States of America, 103, 18586–18591.

    Article  PubMed  CAS  Google Scholar 

  44. Saada, A. (2004). Deoxyribonucleotides and disorders of mitochondrial DNA integrity. DNA and Cell Biology, 23, 797–806.

    Article  PubMed  CAS  Google Scholar 

  45. Iacobazzi, V., Ventura, M., Fiermonte, G., Prezioso, G., Rocchi, M., & Palmieri, F. (2001). Genomic organization and mapping of the gene (SLC25A19) encoding the human mitochondrial deoxynucleotide carrier (DNC). Cytogenetics and Cell Genetics, 93, 40–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DHHS, NIH NHLBI R01 HL072707 (to WL). We thank Staffan Eriksson and Liya Wang (Department of Molecular Biosciences, SLU, Uppsala, Sweden) for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Kohler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohler, J.J., Hosseini, S.H., Green, E. et al. Cardiac-Targeted Transgenic Mutant Mitochondrial Enzymes: mtDNA Defects, Antiretroviral Toxicity and Cardiomyopathy. Cardiovasc Toxicol 8, 57–69 (2008). https://doi.org/10.1007/s12012-008-9015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-008-9015-1

Keywords

Navigation