Skip to main content
Log in

Deterministic and Stochastic Models of NFκB Pathway

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

In the article, we discuss the state of art and perspectives in deterministic and stochastic models of NFκB regulatory module. The NFκB is a transcription factor controlling various immune responses including inflammation and apoptosis. It is tightly regulated by at least two negative feedback loops involving IκBα and A20. This mode of regulation results in nucleus-to-cytoplasm oscillations in NFκB localization, which induce subsequent waves of NFκB responsive genes. Single cell experiments carried by several groups provided comprehensive evidence that stochastic effects play an important role in NFκB regulation. From modeling point of view, living cells might be considered noisy or stochastic biochemical reactors. In eukaryotic cells, in which the number of protein or mRNA molecules is relatively large, stochastic effects primarily originate in regulation of gene activity. Transcriptional activity of a gene can be initiated by trans-activator molecules binding to the specific regulatory site(s) in the target gene. The stochastic event of gene activation is amplified by transcription and translation, since it results in a burst of mRNA molecules, and each copy of mRNA then serves as a template for numerous protein molecules. Another potential source of variability can be receptors activation. At low-dose stimulation, important in cell-to-cell signaling, the number of active receptors can be low enough to introduce substantial noise to downstream signaling. Stochastic modeling confirms the large variability in cell responses and shows that no cell behaves like an “average” cell. This high cell-to-cell variability can be one of the weapons of the immune defense. Such non-deterministic defense may be harder to overcome by relatively simple programs coded in viruses and other pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gillespie, D. T. (1977). Exact stochastic simulations of coupled chemical reactions. The Journal of Physical Chemistry, 81, 2340–2361.

    Article  CAS  Google Scholar 

  2. Haseltine, E. L., & Rawlings, J. B. (2002). Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. The Journal of Chemical Physics, 117, 6959–6969.

    Article  CAS  Google Scholar 

  3. Brasier, A. R. (2006). The NF-κB regulatory networks. Cardiovascular Toxicology, 6, 111–130.

    Article  PubMed  CAS  Google Scholar 

  4. Hoffmann, A., & Baltimore, D. (2006). Circuitry of nuclear κB factor signaling. Immunological Review, 210, 171–186.

    Article  Google Scholar 

  5. Sun, S.-C., Ganchi, P. A., Ballard, D. W., & Greene, W. C. (1993). NF-κB controls expression of inhibitor IκBα: Evidence for an inducible autoregulatory pathway. Science, 259, 1912–1915.

    Article  PubMed  CAS  Google Scholar 

  6. Krikos, A., Laherty, C. D., & Dixit, V. M. (1992). Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. The Journal of Biological Chemistry, 267, 17971–17976.

    PubMed  CAS  Google Scholar 

  7. Lee, E. G., Boone, D. L., Chai, S., Libby, S. L., Chien, M., Lodolce, J. P., & Ma, A. (2000). Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science, 289, 2350–2354.

    Article  PubMed  CAS  Google Scholar 

  8. Bauch, A., & Superti-Furga, G. (2006). Charting protein complexes, signaling pathways, and networks in the immune system. Immunological Reviews, 210, 187–207.

    Article  PubMed  CAS  Google Scholar 

  9. Karin, M. (1999). The beginning of the end: IκB kinase (IKK) and NF-κB activation. The Journal of Biological Chemistry, 274, 27339–27342.

    Article  PubMed  CAS  Google Scholar 

  10. Hoffmann, A., Levchenko, A. Scott, M. L., & Baltimore, D. (2002). The IκB − NF − κB signaling module: Temporal control and selective gene activation. Science, 298, 1241–1245.

    Article  PubMed  CAS  Google Scholar 

  11. Kearns, J. D., Basak, S., Werner, Sh. L., Huang, Ch. H., & Hoffmann, A. (2006). IκBɛ provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression. The Journal of Cell Biology DOI: 10.1083/jcb.200510155 JCB

  12. Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B., & Kimmel, M. (2004). Mathematical model of NF-κB regulatory module. Journal of Theoretical Biology, 228, 195–215.

    Article  PubMed  CAS  Google Scholar 

  13. Park, S. G., Lee, T., Kang, H. Y., Park, K., Cho, K-H., & Jung, G. (2006). The influence of the signal dynamics of activated form of IKK on NFκB and anti-apoptotic gene expression: A systems biology approach. FEBS Letters, 580, 822–830.

    Article  PubMed  CAS  Google Scholar 

  14. Ko, M. S. H. (1991). Stochastic model for gene induction. Journal of Theoretical Biology, 153, 181–194.

    Article  PubMed  CAS  Google Scholar 

  15. McAdams, H. H., & Arkin, A. (1997). Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences USA, 94, 814–819.

    Google Scholar 

  16. Kierzek, A. M., Zaim, J., & Zielenkiewicz, P. (2001). The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. The Journal of Biological Chemistry, 276, 8165–8172.

    Article  PubMed  CAS  Google Scholar 

  17. Thattai, M., & Oudenaarden, A. (2001). Intrinsic noise in gene regulatory networks. Proceedings of the National Academy of Sciences USA, 98, 8614–8619.

    Google Scholar 

  18. Tomioka, R., Kimura, H., Kobayashi, T. J., & Aihara, K. (2004). Multivariate analysis of noise in genetic regulatory networks. Journal of Theoretical Biology, 229, 501–521.

    Article  PubMed  CAS  Google Scholar 

  19. Kærn, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression from theories to phenotypes. Nature Reviews, 6, 451–464.

    Article  PubMed  CAS  Google Scholar 

  20. Walters, M. C., Fiering, S., Eidemiller, J., Magis, W., Groudine, M., & Martin, D. I. K. (1995). Enhancers increase the probability but not the level of gene expression. Proceedings of the National Academy of Sciences USA, 92, 7125–7129.

    Google Scholar 

  21. Blake, W. J., Kærn, M., Cantor, C. R., & Collins, J. J. (2003). Noise in eucaryotic gene expression. Nature, 422, 633–637.

    Article  PubMed  CAS  Google Scholar 

  22. Takasuka, N., White, M. R. H., Wood, C. D., Robertson, W. R., & Davis, J. R. E. (1998). Dynamic changes in prolactin promoter activation in individual living lactotrophic cells. Endocrinology, 139, 1361–1368.

    Article  PubMed  CAS  Google Scholar 

  23. Stirland, J. A., Seymour, Z. C., Windeatt, S., Norris, A. J., Stanley, P., Castro, M. G., Loudon, A. S. I., White, M. R. H., & Davis, J. R. E. (2003). Real-time imaging of gene promoter activity using an adenoviral reporter construct demonstrates transcriptional dynamics in normal anterior pituary cells. The Journal of Endocrinology 178, 61–69.

    Article  PubMed  CAS  Google Scholar 

  24. Raser, J. M., & O’Shea, E. K. (2004). Control of stochasticity in eukaryotic gene expression. Science, 304, 1811–1814.

    Article  PubMed  CAS  Google Scholar 

  25. Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297, 1183–1186.

    Article  PubMed  CAS  Google Scholar 

  26. Kepler, T. B., & Elston, T. C. (2001). Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations. Biophysical Journal, 81, 3116–3136.

    PubMed  CAS  Google Scholar 

  27. Pirone, J. R., & Elston, T. C. (2004). Fluctuations in transcription factor binding can be explain the graded and binary responses observed in inducible gene expression. Journal of Theoretical Biology, 226, 111–121.

    Article  PubMed  CAS  Google Scholar 

  28. Lipniacki, T., Paszek, P., Marciniak-Czochra, A., Brasier, A. R., & Kimmel, M. (2006). Transcriptional stochasticity in gene expression. Journal of Theoretical Biology, 238, 348–367.

    Article  PubMed  CAS  Google Scholar 

  29. van Kampen, N. G. (1992). Stochastic processes in chemistry and physics. Amsterdam: North-Holland.

  30. Cao, Y., Petzold, L. R., Rathinam, M., Gillespie, D. T. (2004). The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. The Journal of Chemical Physics, 121, 12169–12178.

    Article  PubMed  CAS  Google Scholar 

  31. Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically reacting system. The Journal of Physical Chemistry, 115, 1716–1733.

    Article  CAS  Google Scholar 

  32. Rao, Ch. V., Arkin, A. P. (2003). Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. The Journal of Chemical Physics, 118, 4999–5010.

    Article  CAS  Google Scholar 

  33. Cao, Y., Gillespie, D. T., & Petzold, L. R. (2005). The slow-scale stochastic algorithm. The Journal of Chemical Physics, 122, 014116.

    Article  CAS  Google Scholar 

  34. Puchalka, J., & Kierzek, A. M., (2004). Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophysical Journal, 86, 1357–1372.

    PubMed  CAS  Google Scholar 

  35. Nelson, D. E., Ihekwaba, A. E. C., Elliot, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., et al. (2004). Oscillations in NF-κB signaling control the dynamics of gene expression. Science, 306, 704–708.

    Google Scholar 

  36. Carlotti, F., Chapman, R., Dower, S. K., & Qwarnstrom, E. E. (1999). Activation of nuclear factor κB in single living cells. The Journal of Biological Chemistry, 274, 37941–37949.

    Article  PubMed  CAS  Google Scholar 

  37. Nelson, G., Paraoan, L., Spiller, D. G., Wilde, G. J. C., Browne, A. M., & Djali, P. K., et al. (2002). Multi-parameter analysis of the kinetics of NF-κB signalling and transcription in single living cells. Journal of Cell Science, 115, 1137–1148.

    PubMed  CAS  Google Scholar 

  38. Yang, L., Ross, K., & Qwarnstrom, E. E. (2003). RelA Control of IκBα phosphorylation. The Journal of Biological Chemistry, 278, 30881–30888.

    Article  PubMed  CAS  Google Scholar 

  39. Schooley, K., Zhu, P., Dower, S. K., & Qwarnstrom, E. E. (2003). Regulation of nuclear translocation of nuclear factor-κB RelA: Evidence for complex dynamics at the single-cell level. The Biochemical Journal, 369, 331–339.

    Article  PubMed  CAS  Google Scholar 

  40. Mendes, P. (2001). Modeling large biological systems from functional genomic data: Parameter estimation. In H. Kitano (Ed.), Foundations of systems biology (pp. 163–181). MIT Press.

  41. Mendes, P. (1993). GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Computer Applications in the Biosciences, 9, 563–571; Mendes, P. (1997). Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends in Biochemical Sciences, 22, 361–363; Mendes, P., & Kell, D. B. (1998). Non-linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation. Bioinformatics, 14, 869–883.

    Google Scholar 

  42. Fujarewicz, K., Kimmel, M., Lipniacki, T., & Świerniak, A. (2007). Adjoint systems for models of cell signaling pathways and their application to parameter fitting. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4, 322–335.

    Google Scholar 

  43. Werner, Sh. L., Barken, D., Hoffmann, A. (2005). Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science, 309, 1857–1861.

    Article  PubMed  CAS  Google Scholar 

  44. Covert, M. W., Leung, Th. H., Gaston, J. E., & Baltimore, D. (2005). Achieving stability of lipopolysaccharide-induced NFκB activation. Science, 309, 1854–1857.

    Article  PubMed  CAS  Google Scholar 

  45. Cheong, R., Bergmann, A., Werner, Sh. L., Regal, J., Hoffmann, A., & Levchenko, A. (2006). Transient IκB kinase activity mediates temporal NFκB dynamics in response to wide rage of tumor necrosis factor-α doses. The Journal of Biological Chemistry, 281, 2945–2950.

    Article  PubMed  CAS  Google Scholar 

  46. Gerondakis, S., Grossmann, M., Nakamura, Y., Pohl, T., & Grumont, R. (1999). Genetic approaches in mice to understand Rel/ NF-κB and IκB function: Transgenics and knockouts. Oncogene, 18, 6888–6895.

    Article  PubMed  CAS  Google Scholar 

  47. Jiang, X., Takahashi, N., Matsui, N., Tetsuka, T., & Okamoto, T (2003). The NF-κB activation in lymphotoxin receptor signaling depends on the phosphorylation of p65 at serine 536. The Journal of Biological Chemistry, 278, 919–926.

    Google Scholar 

  48. Cho, K.-H., Shin, S.-Y., Lee, H.-W., & Wolkenhauer, O. (2003). Investigations into the analysis and modeling of the TNFα-mediated NFκB-signaling pathway. Genome Research, 13, 2413–2422.

    Article  PubMed  CAS  Google Scholar 

  49. Delhase, M., Hayakawa, M., Chen, Y., & Karin, M. (1999). Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science, 284, 309–313.

    Article  PubMed  CAS  Google Scholar 

  50. Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B., & Kimmel. M. (2006). Stochastic regulations in early immune response. The Biophysical Journal, 90, 725–742.

    Article  CAS  Google Scholar 

  51. Tian, B., Nowak, D. E., Jamaluddin, M., Wang, S., & Brasier, A. R. (2005). Identification of direct genomic targets downstream of the NF-kappa B transcription factor mediating TNFα signaling. The Journal of Biological Chemistry, 280, 17435–17448.

    Article  PubMed  CAS  Google Scholar 

  52. Paszek, P., Lipniacki, T., Brasier, A. R., Tian, B., Novak, D. E., & Kimmel, M. (2005). Stochastic effects of multiple regulators on expression profiles in Eukaryotes. The Journal of Theoretical Biology, 233, 423–433.

    Article  CAS  Google Scholar 

  53. Femino, A. M, Fay, F. S., Fogarty, K., & Singer, R. H. (1998). Visualization of single RNA transcripts in situ. Science, 280, 585–590.

    Article  PubMed  CAS  Google Scholar 

  54. Carlotti, F, Dower, S. K., & Qwarnstrom, E. E. (2000). Dynamic shuttling of nuclear factor kappa B between the nucleus and cytoplasm as a consequence of inhibitor dissociation. The Journal of biological chemistry, 275, 41028–41034.

    Article  PubMed  CAS  Google Scholar 

  55. Nelson, D. E., Horton, C. A., See, V., Johnson, J. R., Nelson, G., Spiller, D. G., Kell D. B., & White, M. R. H. (2005). Response to comment on “Oscillations in NF-κB signaling control the dynamics of gene expression”. Science, 308, 52b.

    Article  Google Scholar 

  56. Barken, D., Wang, Ch. J., Kearns, J., Cheong, R., Hoffmann, A., & Levchenko, A. (2005). Comment on “Oscillations in NF-κB signaling control the dynamics of gene expression”. Science, 308, 52a.

    Article  Google Scholar 

  57. Hayot, F., & Jayaprakash, C. (2006). NFκB oscillations and cell-to-cell variability. The Journal of Theoretical Biology, 240, 583–591.

    Article  CAS  Google Scholar 

  58. Jamaluddin, M., Wang, S., Boldogh, I., Tian, B., & Brasier, A. R. (2007). TNF-α-induced NF-κB/Rel A Ser (276) phosphorylation and enhance some formation on the IL-8 promoter is mediated by an ROS-dependent PKAc pathway. Cellular Signalling, 19, 1419–1433.

    Google Scholar 

  59. Tian, B., Nowak, D., & Brasier, A. R. (2005). A TNF induced gene expression program under oscillatory NF-κB control. BMC Genomics, 6, 137.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Allan R. Brasier and Michel R. H. White for discussion and Dr. Pawel Paszek for help with preparing figures. This work was supported by Polish Committee for Scientific Research Grants No. 4 T07A 001 30 and 3 T11A 019 29, and by NHLBI contract N01-HV-28184, Proteomic technologies in airway inflammation (A. Kurosky, P.I.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Lipniacki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipniacki, T., Kimmel, M. Deterministic and Stochastic Models of NFκB Pathway. Cardiovasc Toxicol 7, 215–234 (2007). https://doi.org/10.1007/s12012-007-9003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-9003-x

Keywords

Navigation