Skip to main content

Advertisement

Log in

Potentially Reduced Exposure Cigarettes Accelerate Atherosclerosis: Evidence for the Role of Nicotine

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The tobacco industry markets potentially reduced exposure products (PREPs) as less harmful or addictive alternatives to conventional cigarettes. This study compared the effects of mainstream smoke from Quest, Eclipse, and 2R4F reference cigarettes on the development of atherosclerosis in apolipoprotein E-deficient (apoE −/−) mice. Mice were exposed to smoke from four cigarette types for 12 weeks beginning at age of 12 weeks, and in a separate study for 8 weeks, beginning at age of 8 weeks. In both studies, mice exposed to smoke from high-nicotine, high-tar Quest 1, and 2R4F cigarettes developed greater areas of lipid-rich aortic lesions than did non-smoking controls. Exposure to smoke from the lower-nicotine products, Eclipse, and Quest 3, was associated with smaller lesion areas, but animals exposed to smoke from all of the tested types of cigarette had larger lesions than did control animals not exposed to smoke. Urinary levels of isoprostane F2 alpha VI, increased proportionally to cigarette nicotine yield, whereas induction of pulmonary cytochrome P4501A1 was proportional to tar yield. Lesion area was associated with both nicotine and tar yields, although in multiple regression analysis only nicotine was a significant predictor of lesion area. Smoke exposure did not alter systolic blood pressure (SBP), heart rate (HR), blood cholesterol, or leukocyte count. Taken together, these observations suggest that smoking may accelerate atherosclerosis by increasing oxidative stress mediated at least in part via the actions of nicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meckley, D. R., Hayes, J. R., Van Kampen, K. R., Ayres, P. H., Mosberg, A. T., & Swauger, J. E. (2004). Comparative study of smoke condensates from 1R4F cigarettes that burn tobacco versus ECLIPSE cigarettes that primarily heat tobacco in the SENCAR mouse dermal tumor promotion assay. Food and Chemical Toxicology, 42, 851–863.

    Article  PubMed  CAS  Google Scholar 

  2. Ambrose, J., & Barua, R. (2004). The pathophysiology of cigarette smoking and cardiovascular disease: An update. Journal of The American College of Cardiology, 43, 1731–1737.

    Article  PubMed  CAS  Google Scholar 

  3. Kilaru, S., Frangos, S., Chen, A., Gortler, D., Dhadwal, A., Araim, O., & Sumpio, B. (2001). Nicotine: A review of its role in atherosclerosis. Journal of The American College of Surgeons, 193, 538–546.

    Article  PubMed  CAS  Google Scholar 

  4. Moskowitz, W. B., Mosteller, M., Schieken, R. M., Bossano, R., Hewitt, J. K., Bodurtha, J. N., & Segrest, J. P. (1990). Lipoprotein and oxygen transport alterations in passive smoking preadolescent children. The MCV Twin Study. Circulation, 81, 586–592.

    PubMed  CAS  Google Scholar 

  5. Feldman, J., Shenker, I. R., Etzel, R. A., Spierto, F. W., Lilienfield, D. E., Nussbaum, M., & Jacobson, M. S. (1991). Passive smoking alters lipid profiles in adolescents. Pediatrics, 88, 259–264.

    PubMed  CAS  Google Scholar 

  6. Bergmann, S., Siekmeier, R., Mix, C., & Jaross, W. (1998). Even moderate cigarette smoking influences the pattern of circulating monocytes and the concentration of sICAM-1. Respiratoires Physiology, 114, 269–275.

    Article  CAS  Google Scholar 

  7. Penn, A., Batastini, G., Soloman, J., Burns, F., & Albert, R. (1981). Dose-dependent size increases of aortic lesions following chronic exposure to 7,12-dimethylbenz(a)anthracene. Cancer Research, 41, 588–592.

    PubMed  CAS  Google Scholar 

  8. Batastini, G., & Penn, A. (1984). An ultrastructural comparison of carcinogen-associated and spontaneous aortic lesions in the cockerel. American Journal of Pathology, 114, 403–409.

    PubMed  CAS  Google Scholar 

  9. Penn, A., & Snyder, C. (1988). Arteriosclerotic plaque development is ‘promoted’ by polynuclear aromatic hydrocarbons. Carcinogenesis, 9, 2185–2189.

    Article  PubMed  CAS  Google Scholar 

  10. Albert, R. E., Vanderlaan, M., Burns, F. J., & Nishizumi, M. (1977). Effect of carcinogens on chicken atherosclerosis. Cancer Research, 37, 2232–2235.

    PubMed  CAS  Google Scholar 

  11. Bond, J. A., Gown, A. M., Yang, H. L., Benditt, E. P., & Juchau, M. R. (1981). Further investigations of the capacity of polynuclear aromatic hydrocarbons to elicit atherosclerotic lesions. Journal of Toxicology Environmental Health, 7, 327–335.

    Article  CAS  Google Scholar 

  12. Curfs, D. M., Lutgens, E., Gijbels, M. J., Kockx, M. M., Daemen, M. J., & van Schooten, F. J. (2004). Chronic exposure to the carcinogenic compound benzo[a]pyrene induces larger and phenotypically different atherosclerotic plaques in ApoE-knockout mice. American Journal of Pathology, 164, 101–108.

    PubMed  CAS  Google Scholar 

  13. Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., & Ross, R. (1994). ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis and Thrombosis, 14, 133–140.

    PubMed  CAS  Google Scholar 

  14. Gairola, C., Drawdy, M., Block, A., & Daugherty, A. (2001). Sidestream cigarette smoke accelerates atherogenesis in apolipoprotein E −/− mice. Atherosclerosis, 156, 49–55.

    Article  PubMed  CAS  Google Scholar 

  15. Heeschen, C., Jang, J. J., Weis, M., Pathak, A., Kaji, S., Hu, R. S., Tsao, P. S., Johnson, F. L., & Cooke, J. P. (2001). Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine, 7, 833–839.

    Article  PubMed  CAS  Google Scholar 

  16. Catanzaro, D. F., Chen, R., Yan, Y., Hu, L., Sealey, J. E., & Laragh, J. H. (1999). Appropriate regulation of renin and blood pressure in 45 kb human renin/human angiotensinogen transgenic mice. Hypertension, 33, 318–322.

    PubMed  CAS  Google Scholar 

  17. Hecht, S. S., Carmella, S. G., Chen, M., Dor Koch, J. F., Miller, A. T., Murphy, S. E., Jensen, J. A., Zimmerman, C. L., & Hatsukami, D. K. (1999). Quantitation of urinary metabolites of a tobacco-specific lung carcinogen after smoking cessation. Cancer Research, 59, 590–596.

    PubMed  CAS  Google Scholar 

  18. Ding, T., Yao, Y., & Pratico, D. (2005). Increase in peripheral oxidative stress during hypercholesterolemia is not reflected in the central nervous system: Evidence from two mouse models. Neurochemistry International, 46, 435–439.

    Article  PubMed  CAS  Google Scholar 

  19. Almahmeed, T., Boyle, J. O., Cohen, E. G., Carew, J. F., Du, B., Altorki, N. K., Kopelovich, L., Fang, J. L., Lazarus, P., Subbaramaiah, K., & Dannenberg, A. J. (2004). Benzo[a]pyrene phenols are more potent inducers of CYP1A1, CYP1B1 and COX-2 than benzo[a]pyrene glucuronides in cell lines derived from the human aerodigestive tract. Carcinogenesis, 25, 793–799.

    Article  PubMed  CAS  Google Scholar 

  20. Morrow, J. (2005). Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arteriosclerosis Thrombosis and Vascular Biology, 25, 279–286.

    Article  CAS  Google Scholar 

  21. Cai, H., Griendling, K., & Harrison, D. (2003). The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends in Pharmacological Sciences, 24, 471–478.

    Article  PubMed  CAS  Google Scholar 

  22. Madamanchi, N., Vendrov, A., & Runge, M. (2005). Oxidative stress and vascular disease. Arteriosclerosis Thrombosis and Vascular Biology, 25, 29–38.

    Article  CAS  Google Scholar 

  23. Nebert, D., Roe, A., Dieter, M., Solis, W., Yang, Y., & Dalton, T. (2000). Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochemical Pharmacology, 59, 65–85.

    Article  PubMed  CAS  Google Scholar 

  24. Yan, Z., Subbaramaiah, K., Camilli, T., Zhang, F., Tanabe, T., McCaffrey, T., Dannenberg, A., & Weksler, B. (2000). Benzo[a]pyrene induces the transcription of cyclooxygenase-2 in vascular smooth muscle cells. Evidence for the involvement of extracellular signal-regulated kinase and NF-kappaB. Journal of Biological Chemistry, 275, 4949–4955.

    Article  PubMed  CAS  Google Scholar 

  25. Reddy, S., Finkelstein, E., Wong, P., Phung, A., Cross, C., & van der Vliet, A. (2002). Identification of glutathione modifications by cigarette smoke. Free Radical Biology and Medicine, 33, 1490–1498.

    Article  PubMed  CAS  Google Scholar 

  26. Tonnessen, B., Severson, S., Hurt, R., & Miller, V. (2000). Modulation of nitric-oxide synthase by nicotine. Journal of Pharmacology and Experimental Therapeutics, 295, 601–606.

    PubMed  CAS  Google Scholar 

  27. Chalon, S., Moreno, H., Benowitz, N., Hoffman, B., & Blaschke, T. (2000). Nicotine impairs endothelium-dependent dilatation in human veins in vivo. Clinical Pharmacology & Therapeutics, 67, 391–397.

    Article  CAS  Google Scholar 

  28. Kiowski, W., Linder, L., Stoschitzky, K., Pfisterer, M., Burckhardt, D., Burkart, F., & Buhler, F. R. (1994). Diminished vascular response to inhibition of endothelium-derived nitric oxide and enhanced vasoconstriction to exogenously administered endothelin-1 in clinically healthy smokers. Circulation, 90, 27–34.

    PubMed  CAS  Google Scholar 

  29. Benowitz, N. L. (1997). The role of nicotine in smoking-related cardiovascular disease. Preventive Medicine, 26, 412–417.

    Article  PubMed  CAS  Google Scholar 

  30. Jones, G. T., Jiang, F., McCormick, S. P., & Dusting, G. J. (2005). Elastic lamina defects are an early feature of aortic lesions in the apolipoprotein E knockout mouse. Journal of Vascular Research, 42, 237–246.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, S., Link, C., Jensen, J., Le, C., Puumala, S., Hecht, S., Carmella, S., Losey, L., & Hatsukami, D. (2004). A comparison of urinary biomarkers of tobacco and carcinogen exposure in smokers. Cancer Epidemiology Biomarkers & Prevention, 13, 1617–1623.

    CAS  Google Scholar 

  32. Lee, P. (1999). Uses and abuses of cotinine as a marker of tobacco smoke exposure. In J. Garrod & P. Jacob III (Eds.), Analytical determination of nicotine, cotinine and their related compounds and their metabolites. New York: Elsevier.

    Google Scholar 

  33. Djordjevic, M. V., Stellman, S. D., & Zang, E. (2000). Doses of nicotine and lung carcinogens delivered to cigarette smokers. Journal of The National Cancer Institute, 92, 106–111.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Stephen S. Hecht for carrying out measurements of urinary nicotine and cotinine, and Dr. Sharon Murphy for helpful comments on the manuscript. This work was supported in part by NIH grants HL 64660 to Daniel F Catanzaro and HL 55627 to Babette B. Weksler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Catanzaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catanzaro, D.F., Zhou, Y., Chen, R. et al. Potentially Reduced Exposure Cigarettes Accelerate Atherosclerosis: Evidence for the Role of Nicotine. Cardiovasc Toxicol 7, 192–201 (2007). https://doi.org/10.1007/s12012-007-0027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0027-z

Keywords

Navigation