Skip to main content
Log in

Reduction of protein synthesis and statin-induced cardiomyocyte cell death

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The objective of this study was to determine whether an HMG Co A reductase inhibitor (statin) reduces protein synthesis in cardiomyocytes and whether this action maybe an underlying mechanism for statin-induced cell death. Cardiomyocytes from embryonic chick heart were maintained in culture. Cells exposed to lovastatin for 4 h showed a concentration dependent reduction in protein synthesis as assessed by [3H] leucine incorporation and [35S] methionine incorporation. Compared to control, lovastatin 100 μM, which produced a 25% increase in cell death, induced a three-fold reduction in methionine incorporation. [35S] methionine autoradiography showed little (new) protein synthesis at concentrations of lovastatin of 70 μM or higher; an effect that was not limited to specific proteins. Cardiomyocytes treated with lovastatin showed morphologic changes in the nucleoli consistent with insufficient protein synthesis. These cardiomyocytes manifested cell death under conditions of reduced protein synthesis. Interruption of protein synthesis with cycloheximide, a ribosomal RNA transcription inhibitor or reduction in protein substrate availability by lowering the media concentration of fetal calf serum was associated with a concentration-dependent reductions in cell viability. Importantly, stimulation of protein synthesis by higher concentrations of fetal calf serum limited lovastatin-induced cell death. These data suggest that statin-induced inhibition of protein synthesis is an underlying mechanism for statin-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  1. Bastiaanse, E. M., Atsma, D. E., Kuijpers, M. M., & Van der Laarse, A. (1994). Simvastatin-sodium delays cell death of anoxic cardiomyocytes by inhibition of the Na+/Ca2+ exchanger. FEBS Letters, 343, 151–154.

    Article  PubMed  CAS  Google Scholar 

  2. Caraglia, M., Budillon, A., Vitale, G., Lupoli, G., Tagliaferri, P., & Abbruzzese, A. (2000). Modulation of molecular mechanisms involved in protein synthesis machinery as a new tool for the control of cell proliferation. European Journal of Biochemistry, 267, 3919–3936.

    Article  PubMed  CAS  Google Scholar 

  3. Coxon, F. P., Benford, H. L., Russell, R. G., & Rogers, M. J. (1998). Protein synthesis is required for caspase activation and induction of apoptosis by bisphosphonate drugs. Molecular Pharmacology, 54, 631–638.

    PubMed  CAS  Google Scholar 

  4. Delerive, P., Martin-Nizard, F., Chinetti, G., Trottein, F., Fruchart, J. C., Najib, J., Duriez, P., & Staels, B. (1999). Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circulation Research, 85, 394–402.

    PubMed  CAS  Google Scholar 

  5. Demyanets, S., Kaun, C., Pfaffenberger, S., Hohensinner, P. J., Rega, G., Pammer, J., Maurer, G., Huber, K., & Wojta, J. (2006). Hydroxymethylglutaryl-coenzyme A reductase inhibitors induce apoptosis in human cardiac myocytes in vitro. Biochemical Pharmacology, 71, 1324–1330.

    Article  PubMed  CAS  Google Scholar 

  6. El-Ani, D., & Zimlichman, R. (2001). Simvastatin induces apoptosis of cultured rat cardiomyocytes. Journal of Basic and Clinical Physiology and Pharmacology, 12, 325–338.

    PubMed  CAS  Google Scholar 

  7. Flint, O. P., Masters, B. A., Gregg, R. E., & Durham, S. K. (1997). Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro. Toxicology and Applied Pharmacology, 145, 91–98.

    Article  PubMed  CAS  Google Scholar 

  8. Fodstad, O., & Olsnes, S. (1997) Studies on the accessability of ribosomes to inactivation by the toxic lectins abrin and ricin. European Journal of Biochemistry, 74, 209–215.

    Article  Google Scholar 

  9. Gozuacik, D., & Kimchi, A. (2004). Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 23, 2891–2906.

    Article  PubMed  CAS  Google Scholar 

  10. Hasegawa, H., Yamamoto, R., Takano, H., Mizukami, M., Asakawa, M., Nagai, T., & Komuro, I. (2003). 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors prevent the development of cardiac hypertrophy and heart failure in rats. Journal of Molecular and Cellular Cardiology, 35, 953–960.

    Article  PubMed  CAS  Google Scholar 

  11. Hayashidani, S., Tsutsui, H., Shiomi, T., Suematsu, N., Kinugawa, S., Ide, T., Wen, J., & Takeshita, A. (2002). Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 105, 868–873.

    Article  PubMed  CAS  Google Scholar 

  12. Iimura, O., Vrtovsnik, F., Terzi, F., & Friedlander, G. (1997). HMG-CoA reductase inhibitors induce apoptosis in mouse proximal tubular cells in primary culture. Kidney International, 52, 962–972.

    Article  PubMed  CAS  Google Scholar 

  13. Indolfi, C., Di Lorenzo, E., Perrino, C., Stingone, A. M., Curcio, A., Torella, D., Cittadini, A., Cardone, L., Coppola, C., Cavuto, L., Arcucci, O., Sacca, L., Avvedimento, E. V., & Chiariello, M. (2002). Hydroxymethylglutaryl coenzyme a reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation, 106, 2118–2124.

    Article  PubMed  CAS  Google Scholar 

  14. Iordanov, M. S., Paranjape, J. M., Zhou, A., Wong, J., Williams, B. R., Meurs, E. F., Silverman, R. H., & Magun, B. E. (2000). Activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase by double-stranded RNA and encephalomyocarditis virus: Involvement of RNase L, protein kinase R, and alternative pathways. Molecular and Cellular Biology, 206, 17–27.

    Google Scholar 

  15. Ito, M., Adachi, T., Pimentel, D. R., Ido, Y., & Colucci, W. S. (2004). Statins inhibit beta-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes via a Rac1-dependent mechanism. Circulation, 110, 412–418.

    Article  PubMed  CAS  Google Scholar 

  16. Kageyama, A., Kusano, I., Tamura, T., Oda, T., & Muramatsu, T. (2002). Comparison of the apoptosis-inducing abilities of various protein synthesis inhibitors in U937 cells. Bioscience, Biotechnology & Biochemistry, 66, 835–839.

    Article  CAS  Google Scholar 

  17. Kashiwagi, Y., Haneda, T., Osaki, J., Miyata, S., & Kikuchi, K. (1998). Mechanical stretch activates a pathway linked to mevalonate metabolism in cultured neonatal rat heart cells. Hypertension Researc – Clinical & Experimental, 21, 109–119.

    CAS  Google Scholar 

  18. Kim, Y. M., Son, K., Hong, S. J., Green, A., Chen, J. J., Tzeng, E., Hierholzer, C., & Billiar, T. R. (1998). Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha. Molecular Medicine, 4, 179–190.

    PubMed  CAS  Google Scholar 

  19. Kong, J. Y., & Rabkin, S. W. (2002). Lovastatin does not accentuate but is rather additive to palmitate-induced apoptosis in cardiomyocytes. Prostaglandins, Leukotrienes and Essential Fatty Acids, 67, 293–302.

    Article  CAS  Google Scholar 

  20. Kong, J. Y., & Rabkin S. W. (2005). The association of RhoB with caspase-2: Changes with lovastatin-induced apoptosis. Biochemistry and Cell Biology, 83, 608–619.

    Article  PubMed  CAS  Google Scholar 

  21. Kroemer, G., & El Deiry, W. S., Golstein, P., et al. (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death and Differentiation, 12(suppl 2), 1463–1467.

    Article  PubMed  CAS  Google Scholar 

  22. Kyrklund, C., Backman, J. T., Kivisto, K. T., Neuvonen, M., Laitila, J., & Neuvonen, P. J. (2001). Plasma concentrations of active lovastatin acid are markedly increased by gemfibrozil but not by bezafibrate. Clinical Pharmacology and Therapeutics, 69, 340–345.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, T. M., Chou, T. F., & Tsai, C. H. (2003). Effect of pravastatin on cardiomyocyte and ventricular vulnerability in normolipidemic rats after myocardial infarction. Journal of Molecular and Cellular Cardiology, 35, 1449–1459.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, T. M., Lin, M. S., Chou, T. F., Tsai, C. H., & Chang, N. C. (2004). Effect of pravastatin on left ventricular mass by activation of myocardial K ATP channels in hypercholesterolemic rabbits. Atherosclerosis, 176, 273–278.

    Article  PubMed  CAS  Google Scholar 

  25. Levine, B., & Yuan, J. (2005). Autophagy in cell death: An innocent convict? Journal of Clinical Investigation, 115, 2679–2688.

    Article  PubMed  CAS  Google Scholar 

  26. Luo, J. D., Zhang, W. W., Zhang, G. P., Guan, J. X., & Chen, X. (1999). Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clinical and Experimental Pharmacology and Physiology, 26, 903–908.

    Article  PubMed  CAS  Google Scholar 

  27. Melchert, R. B., Liu, H., Granberry, M. C., & Kennedy, R. H. (2001). Lovastatin inhibits phenylephrine-induced ERK activation and growth of cardiac cells. Cardiovascular Toxicology, 1, 237–252.

    Article  PubMed  CAS  Google Scholar 

  28. Nadano, D., & Sato, T. A. (2000). Caspase-3-dependent and -independent degradation of 28 S ribosomal RNA may be involved in the inhibition of protein synthesis during apoptosis initiated by death receptor engagement. Journal of Biological Chemistry, 275, 13967–13973.

    Article  PubMed  CAS  Google Scholar 

  29. Nepomnyashchikh, L. M. (2001). Regenerative and plastic insufficiency of cardiomyocytes during impairment of protein synthesis. Bulletin of Experimental Biology & Medicine, 131, 6–14.

    Article  CAS  Google Scholar 

  30. Nishikawa, H., Miura, S., Zhang, B., Shimomura, H., Arai, H., Tsuchiya, Y., Matsuo, K., & Saku, K. (2004). Statins induce the regression of left ventricular mass in patients with angina. Circulation Journal, 68, 121–125.

    Article  PubMed  CAS  Google Scholar 

  31. Ogata, Y., Takahashi, M., Takeuchi, K., Ueno, S., Mano, H., Ookawara, S., Kobayashi, E., Ikeda, U., & Shimada, K. (2002). Fluvastatin induces apoptosis in rat neonatal cardiac myocytes: A possible mechanism of statin-attenuated cardiac hypertrophy. Journal of Cardiovascular Pharmacology, 40, 907–915.

    Article  PubMed  CAS  Google Scholar 

  32. Oi, S., Haneda, T., Osaki, J., Kashiwagi, Y., Nakamura, Y., Kawabe, J., & Kikuchi, K. (1999) Lovastatin prevents angiotensin II-induced cardiac hypertrophy in cultured neonatal rat heart cells. European Journal of Pharmacology, 376, 139–148.

    Article  PubMed  CAS  Google Scholar 

  33. Olender, E. H., & Simon, R. D. (1992). The intracellular targeting and membrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase. Journal of Biological Chemistry, 267, 4223–4235.

    PubMed  CAS  Google Scholar 

  34. Patel, R., Nagueh, S. F., Tsybouleva, N., Abdellatif, M., Lutucuta, S., Kopelen, H. A., Quinones, M. A., Zoghbi, W. A., Entman, M. L., Roberts, R., & Marian, A. J. (2001). Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 104, 317–324.

    PubMed  CAS  Google Scholar 

  35. Querin, S., Lambert, R., Cusson, J. R., Gregoire, S., Vickers, S., Stubbs, R. J., Sweany, A. E., & Larochelle, P. (1991). Single-dose pharmacokinetics of 14C-lovastatin in chronic renal failure. Clinical Pharmacology and Therapeutics, 50, 437–441.

    Article  PubMed  CAS  Google Scholar 

  36. Rabkin, S. W. (2002). Lovastatin induces cell death in cardiomyocytes that is not reversible by coenzyme Q 10. Pharmacology and Toxicology, 90, 343–345.

    Article  PubMed  CAS  Google Scholar 

  37. Rabkin, S. W., Goutsouliak, V., & Kong, J. Y. (1997). Angiotensin II induces activation of phosphatidylinositol 3-kinase in cardiomyocytes. Journal of Hypertension, 15, 891–899.

    Article  PubMed  CAS  Google Scholar 

  38. Rabkin, S. W., & Kong, J. Y. (2003). Lovastatin-induced cardiac toxicity involves both oncotic and apoptotic cell death with the apoptotic component blunted by both caspase-2 and caspase-3 inhibitors. Toxicology and Applied Pharmacology, 193, 346–355.

    Article  PubMed  CAS  Google Scholar 

  39. Rao, R. V., Ellerby, H. M., & Bredesen, D. E. (2004). Coupling endoplasmic reticulum stress to the cell death program. Cell Death and Differentiation, 11, 372–380.

    Article  PubMed  CAS  Google Scholar 

  40. Rhoads, R. E. (1999). Signal transduction pathways that regulate eukaryotic protein synthesis. Journal of Biological Chemistry, 274, 30337–30340.

    Article  PubMed  CAS  Google Scholar 

  41. Sanada, S., Node, K., Asanuma, H., Ogita, H., Takashima, S., Minamino, T., Asakura, M., Liao, Y., Ogai, A., Kim, J., Hori, M., & Kitakaze, M. (2002). Opening of the adenosine triphosphate-sensitive potassium channel attenuates cardiac remodeling induced by long-term inhibition of nitric oxide synthesis: role of 70-kDa S6 kinase and extracellular signal-regulated kinase. Journal of American College of Cardiology, 40, 991–997.

    Article  CAS  Google Scholar 

  42. Takahashi, M., Ogata, Y., Okazaki, H., Takeuchi, K., Kobayashi, E., Ikeda, U., & Shimada, K. (2002). Fluvastatin enhances apoptosis in cytokine-stimulated vascular smooth muscle cells. Journal of Cardiovascular Pharmacology, 39, 310–317.

    Article  PubMed  CAS  Google Scholar 

  43. Takemoto M., Node, K., Nakagami, H., Liao, Y., Grimm, M., Takemoto, Y., Kitakaze, M., & Liao, J. K. (2001). Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy Journal of Clinical Investigation, 108, 1429–1437.

    Article  PubMed  CAS  Google Scholar 

  44. Unlu, S., Clunn, G., Schachter, M., Demoliou-Mason, C., & Hughes, A. D. (2001). Action of an HMG CoA reductase inhibitor, lovastatin, on apoptosis of untransformed and ts-SV40 transformed human smooth muscle cells derived from saphenous vein. Journal of Cardiovascular Pharmacology, 38, 161–173.

    Article  PubMed  CAS  Google Scholar 

  45. Verma, S., Rao, V., Weisel, R. D., Li, S.H., Fedak, P. W., Miriuka, S., & Li, R. K. (2004). Novel cardioprotective effects of pravastatin in human ventricular cardiomyocytes subjected to hypoxia and reoxygenation: Beneficial effects of statins independent of endothelial cells. Journal of Surgical Research, 119, 66–71.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, I. K., Lin-Shiau, S. Y., & Lin, J. K. (2000). Induction of apoptosis by lovastatin through activation of caspase-3 and DNase II in leukaemia HL-60 cells. Pharmacology and Toxicology, 86, 83–91.

    Article  PubMed  CAS  Google Scholar 

  47. Warshaw, J. B. (1972). Cellular energy metabolism during fetal development II. Fatty acid oxidation by the developing heart IV Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Developmental Biology, 28, 537–544.

    Article  PubMed  CAS  Google Scholar 

  48. Wertz, I. E., & Hanley, M. R. (1996). Diverse molecular provocation of programmed cell death. Trends in Biochemical Sciences, 21, 359–364.

    Article  PubMed  CAS  Google Scholar 

  49. Wong, W. W., Dimitroulakos, J., Minden, M. D., & Penn, L. Z. (2002). HMG-CoA reductase inhibitors and the malignant cell: The statin family of drugs as triggers of tumor-specific apoptosis. Leukemia, 16, 508–519.

    Article  PubMed  CAS  Google Scholar 

  50. Zhong, W. B., Wang, C. Y., Chang, T. C., & Lee, W. S. (2003). Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis. Endocrinology, 144, 3852–3859.

    Article  PubMed  CAS  Google Scholar 

  51. Zou, Y., Takano, H., Akazawa, H., Nagai, T., Mizukami, M., & Komuro, I. (2002). Molecular and cellular mechanisms of mechanical stress-induced cardiac hypertrophy. Endocrine Journal, 49, 1–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon W. Rabkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabkin, S.W., Lodha, P. & Kong, J.Y. Reduction of protein synthesis and statin-induced cardiomyocyte cell death. Cardiovasc Toxicol 7, 1–9 (2007). https://doi.org/10.1007/s12012-007-0003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0003-7

Keywords

Navigation