Skip to main content

Advertisement

Log in

A chemically induced rat model of hemolysis with disseminated thrombosis

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Although hemolytic anemia and thrombosis, which can be serious or even lethal, are often encountered in daily common practice., their pathogenesis has remained obscure, partially because of the absence of appropriate models. Here we present a unique chemically induced rat model of hemolytic anemia and disseminated thrombosis in which the organs developing infarction are comparable to those seen in humans. We exposed male and female Fischer F344 rats to two, three, or four daily doses of 2-butoxyethanol (BE) at 250 mg/kg body weight and examined for hemolysis and histopathological evidence of disseminated thrombosis on d 2, 3, 4, and 29. Time-course BE-related erythrocytic changes were statistically significant in both sexes. Evidence of thrombosis and infarction was seen mainly in females dosed more than once with widespread thrombotic crisis after two or three dosings, likely explicable by the more significant morphological changes in erythrocytes and hemolysis observed in this gender. We documented thrombosis and infarction in the heart, brain, Jungs, eyes, and bones. Our model with its list of target organs similar to that observed in human diseases characterized by hemolysis and thrombosis [for example, thalassemia, sickle cell disease (SCD), paroxysmal nocturnal hemoglobinuria (PNF), disseminated intravascular coagulation (DIC), thrombotic thrombocytopenic purpura (TTP), and hemolytic uremic syndrome (HUS)] suggests that it can be an excellent tool to study the pathogenesis of such complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker, J.E. and Wandersee, N.J. (1999). Thrombosis in heritable hemolytic disorders. Curr. Opin. Hematol. 6: 71–75.

    Article  PubMed  CAS  Google Scholar 

  2. Borgna Pignatti, C., Carnelli, V., Caruso, V., et al. (1999). Thromboembolic events in beta thalassemia major: an Italian multicenter study. Acta Haematol. 99:76–79.

    Article  Google Scholar 

  3. Eldor, A., Maclouf, J., Lellouche, F., et al. (1993). A chronic hypercoagulable state and life-long platelet activation in beta thalassemia major. Southeast, Asian J. Trop. Med. Public Health 1(24 Suppl.):92–95.

    Google Scholar 

  4. Eldor, A., Durst, R., Hy-Am., E., et al. (1999). A chronic hypercoagulable state in patients with beta-thalassaemia major is already present in childhood. Br. J. Haematol. 107:739–746.

    Article  PubMed  CAS  Google Scholar 

  5. Logothetis, J., Constantoulakis, M., Economidou, J., et al. (1972). Thalassemia major (homozygous beta-thalassemia). A survey of 138 cases with emphasis on neurologic and muscular aspects. Neurology 22:294–304.

    PubMed  CAS  Google Scholar 

  6. Gibson, T. (1984). A market analysis of 2-butoxyethanol and 2-butoxyethylacetate. Prepared for the U.S. Environmental Protection Agency, regulatory Impact, Branch, subcontract EPA 36-5 of ICF, Inc., contract no. 68-02-4055.

  7. Ghanayem, B.I., Ward, S.M., Blair, P.C., and Matthews, H.B. (1990). Comparison of the hematologic effects of 2-butoxyethanol using two types of hematology analyzers. Toxicol. Appl. Pharmacol. 106:341–345.

    Article  PubMed  CAS  Google Scholar 

  8. Udden, M.M. (2002). In vitro sub-hemolytic effects of butoxyacetic acid on human and rat erythrocytes. Toxicol. Sci. 69:258–264.

    Article  PubMed  CAS  Google Scholar 

  9. Udden, M.M. (2000). Rat erythrocyte morphological changes after gavage dosing with 2-butoxyethanol: a comparison with the in vitro effects of butoxyacetic acid on rat and human erythrocytes. J. Appl. Toxicol. 20:381–387.

    Article  PubMed  CAS  Google Scholar 

  10. National Toxicology Program. (1998). Toxicology and carcinogenesis studies of 2-butoxyethanol (CAS No. 111-76-2) in F344/N rats and B6C3F1 mice (inhalation studies). Technical Report Series 484, Department of Health and Human Services, Public Health Service, Bethesda, MD.

    Google Scholar 

  11. Long, P.H., Maronpot, R.R., Ghanayem, B.I., Roycroft, J.H., and Nyska, A. (2000). Dental pulp infarction in female rats following inhalation exposure to 2-butoxyethanol. Toxicol. Pathol. 28:246–252.

    PubMed  CAS  Google Scholar 

  12. Nyska, A., Maronpot, R.R., Long, P.H., et al. (1999). Disseminated thrombosis and bone infarction in female rats following inhalation exposure to 2-butoxyethanol. Toxicol. Pathol. 27:287–294.

    PubMed  CAS  Google Scholar 

  13. Nyska, A., Maronpot, R.R., and Ghanayem, B.I. (1999). Ocular thrombosis and retinal degeneration induced in female F344 rats by 2-butoxyethanol. Hum. Exp. Toxicol. 18:577–582.

    Article  PubMed  CAS  Google Scholar 

  14. Chanas, B., Ward, S., Healy, R., Nyska, A., and Ghanayem, B.I. (1999). Effect of gender on the hematotoxicity of 2-butoxyethanol (BE) in F344 rats. 38th Annual Meeting of The Society of Toxicology, New Orleans, LA (abstract).

  15. Ghanayem, B.I., Long, P.H., Ward, S.M., Chanas, B., Nyska, M., and Nyska, A. (2001). Hemolytic anemia, thrombosis, and infarction in male and female F344 rats following gavage exposure to 2-butoxyethanol. Exp. Toxicol. Pathol. 53:97–105.

    Article  PubMed  CAS  Google Scholar 

  16. Ghanayem, B.I. (1996). An overview of the hematotoxicity of ethylene glycol ethers. Occup. Med. 2:253–268.

    CAS  Google Scholar 

  17. Ward, S., Blair, P.C., and Ghanayem, B.I. (1989). Hematologic effects of 2-butoxyethanol (BE) in vivo and its effect on the morphology of rat erythrocytes. The Toxicologist 9:1155 (abstract).

    Google Scholar 

  18. Udden, M.M. and Paton, C.S. (1994). Hemolysis and deformability of erythrocytes exposed to butoxyacetic acid, a metabolite of 2-butoxyethanol: I. Sensitivity in rats and resistance in normal humans. J. Appl. Toxicol. 14:91–96.

    Article  PubMed  CAS  Google Scholar 

  19. Grossblatt, N. (ed.) (1996). Guide for the Care and Use of Laboratory Animals National Academy Press, Washington, DC.

    Google Scholar 

  20. Chhabra., R.S., Huff, J.E., Schwetz, B.S., and Selkirk, J. (1990). An overview of prechronic and chronic toxicity/carcinogenicity experimental study designs and criteria used by the National Toxicology Program. Environ. Health Perspect. 86:313–321.

    Article  PubMed  CAS  Google Scholar 

  21. Boorman, G.A., Morgan, K.T., and Uraich, L.C. (1990). Nose, larynx, and trachea, in Pathology of the Fischer Rat (G.A. Boorman, S.L. Eustis, M.R. Elwell, C.A. Montgomery, and W.F. MacKenzie, ed.), pp. 315–337, Academic Press, New York.

    Google Scholar 

  22. Peddada, S.D., Prescott, K.E., and Conaway, M. (2001). Tests for order restrictions in binary data. Biometrics 57: 1219–1227.

    Article  PubMed  CAS  Google Scholar 

  23. Andrews, C.H., England, M.C., and Kemp, W.B. (1983). Sickle cell anemia: an etiological factor in pulpal necrosis. J. Endodontics 9:249–252.

    CAS  Google Scholar 

  24. Greves, P. (2000). Haematopoietic and lymphatic system, in Histopathology of Preclinical Studies, Interpretation and Relevance in Drug Safety Evaluation, II Edition (P. Greaves, ed.), pp. 87–156, Elsevier, Amsterdam, Holland.

    Google Scholar 

  25. Zbinden, G. and Grimm, L. (1985). Thrombogenic effects of xenobiotics. Arch. Toxicol. Suppl. 8:131–141.

    PubMed  CAS  Google Scholar 

  26. Yabuki, M., Tani, N., Yoshioka, T., Nishibe, H., Kanamaru, H., and Kaneko, H. (2000). Local thrombus formation in the site of intravenous injection of chlorpromazine: possible colloid-osmotic lysis of the local endothelial, cells. Biol. Pharm. Bull. 23:957–961.

    PubMed  CAS  Google Scholar 

  27. Leach, J.W., Pham, T., Diamandidis, D., and George, J.N. (1999). Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome (TTP-HUS) following treatment with deoxycoformycin in a patient with cutaneous T-cell lymphoma (Sezary syndrome): a case report. Am. J. Hematol. 61:268–270.

    Article  PubMed  CAS  Google Scholar 

  28. Bonner, H. and Erslev, A.J. (1994). The blood and lymphoid organs, in Pathology, 2nd Edition (E. Rubin and J.L. Farber, ed), pp995–1096, JB Lippincott, Philadelphia, PA.

    Google Scholar 

  29. Yokozawa, T., Takako, N., Kunihiko, W., and Koizumi, F. (2001). Animal model of diabetic nephropathy. Exp. Toxicol. Pathol. 53:359–363.

    Article  PubMed  CAS  Google Scholar 

  30. Ghanayem, B.I., Blair, P.C., Thompson, H.B., Maronpot, R.R., and Mathews, H.B. (1987). Effect of age of the toxicity and metabolism of ethylene glycol monobutyl ether (2-butoxyethanol) in rats. Toxicol. Appl. Pharmacol. 91: 222–234.

    Article  PubMed  CAS  Google Scholar 

  31. Ghanayem, B.I. (1989). Metabolic and cellular basis of 2-butoxyethanol-induced hemolytic anemia in rats and assessment of human risk in vitro. Biochem. Pharmacol. 38:1679–1684.

    Article  PubMed  CAS  Google Scholar 

  32. Ghanayem, B.I. and Sullivan, C.A. (1993). Assessment of the hemolytic activity of 2-butoxyethanol and its major metabolite, butoxyacetic acid, in various mammals including humans. Hum. Exp. Toxicol. 12:305–311.

    Article  PubMed  CAS  Google Scholar 

  33. Ghanayem, B.I., Burka, L.T., and Matthews, H.B. (1987). Metabolic basic of ethylene glycol monobutyl ether (2-butoxyethanol) toxicity: role of alcohol and aldehyde dehydrogenases. J. Pharmacol. Exp. Ther. 242:222–231.

    PubMed  CAS  Google Scholar 

  34. National Toxicology Program. (1993). Toxicity studies of ethylene glycol ethers—2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol administered in drinking water to F344/N rats and B6C3F1 mice. Technical Report Series Number 26, NIH Publication 93-3349. U.S. Department of Health and Human Services, Public Health Service, Bethesda, MD.

    Google Scholar 

  35. Udden, M.M. (2000). Rat erythrocyte morphological changes after gavage dosing with 2-butoxyethanol: a comparison with the in vitro effects of butoxyacetic acid on rat and human erythrocytes. J. Appl. Toxicol. 20:381–387.

    Article  PubMed  CAS  Google Scholar 

  36. Lock, S.P., Sephton-Smith, R., and Hardisty, R.M. (1961). Stomatocytosis: a hereditary red cell anomaly associated with hemolytic anemia. Br. J. Haematol. 7:303–314.

    PubMed  CAS  Google Scholar 

  37. Ghanavem, B.I., Ward, S.M., Chanas, B., and Nyska, A. (2000). Comparison of the acute hematotoxicity of 2-butoxyethanol in male and female F344 rats. Hum. Exp. Toxicol. 19:185–192.

    Article  Google Scholar 

  38. Kaysser, T.M., Wandersee, N.J., Bronson, R.T., and Barker, J.E. (1997). Thrombosis and secondary hemochromatosis play major roles in the pathogenesis of jaundiced and spherocytic mice, murine models for hereditary spherocytosis. Blood 90:4610–4619.

    PubMed  CAS  Google Scholar 

  39. Hassoun, H., Wang, Y., Vassiliadis, J., et al. (1998). Targeted inactivation of murine band 3 (AE1) gene produces a hypercoagulable state causing widespread thrombosis in vivo. Blood 92:1785–1792.

    PubMed  CAS  Google Scholar 

  40. Ryan, T.M., Ciavatta, D.J., and Townes, T.M. (1997). Knockout-transgenic mouse model of sickle cell disease. Science 278:873–876.

    Article  PubMed  CAS  Google Scholar 

  41. Eldor, A. and Rachmilewitz, E.A. (2002). The hypercoagulable state in thalassemia. Blood 99:36–43.

    Article  PubMed  CAS  Google Scholar 

  42. Slauson, D.O. (2002). Disturbances of blood flow and circulation. in Mechanisms of Disease, 3rd Edition (D.O. Slauson and B.J. Cooper, ed), 89–139, Mosby, St. Louis, MO.

    Google Scholar 

  43. Sivarao, D.V. and Mehendale, M.H. (1995). 2-Butoxyethanol autoprotection is due to resilience of newly formed erythrocytes to hemolysis. Arch. Toxicol. 69:526–532.

    Article  PubMed  CAS  Google Scholar 

  44. Ghanayem, B.I., Sanchez, I.M., and Matthews, H.B. (1992). Development of tolerance to 2-butoxyethanol-induced hemolytic anemia and studies to elucidate the underlying mechanisms. Tox. Appl. Pharmacol. 112:198–206.

    Article  CAS  Google Scholar 

  45. Kaneko, J.J. (1974). Comparative erythrocyte metabo lism. Adv. Vet. Sci. Comp. Med. 18:117–153.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Nyska.

Additional information

This investigation is dedicated to the memory of Professor Amiram Eldor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezov, N., Levin-Harrus, T., Mittelman, M. et al. A chemically induced rat model of hemolysis with disseminated thrombosis. Cardiovasc Toxicol 2, 181–193 (2002). https://doi.org/10.1007/s12012-002-0003-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-002-0003-6

Key Words

Navigation