Skip to main content

Advertisement

Log in

Higher Levels of Blood Selenium are Associated with Higher Levels of Serum Lipid Profile in US Adults with CKD: Results from NHANES 2013–2018

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The association between selenium (Se) and lipid profile has been controversial in different populations, and the aim of the study was to investigate the relationship between Se and lipid profile in patients with chronic kidney disease (CKD). A total of 861 US adult patients with CKD (male: female = 404:457) from the National Health and Nutrition Examination Survey database were enrolled in this cross-sectional study. We used smoothing spline plots and multivariate binary logistic regression analyses to elucidate the relationships between blood Se and lipid profile. Multivariate adjusted smoothing spline plots showed that higher levels of blood Se were associated with higher levels of serum remnant cholesterol (RC), total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels. Threshold and saturation effects were also observed between serum RC, TC, TG, LDL-C, and blood Se. In multivariate binary logistic regression analyses, the fully adjusted model showed that as blood Se increases by every 1 µg/L, the OR of high RC, high TG and high LDL-C in patients was 1.012 (95% CI: 1.001, 1.023 P = 0.046), 1.011 (95% CI: 1.001, 1.021 P = 0.043) and 1.009 (95% CI: 1.003, 1.016 P = 0.012), respectively. Furthermore, stratified analyses showed that the associations between blood Se and high RC/high TG were significantly stronger in patients aged < 65 years. Higher levels of blood Se were associated with increased serum lipid profile levels and increased risk of high RC, high TC, high LDL-C, and low HDL-C dyslipidemia in adult patients with CKD in the US. However, the real associations between blood Se and lipid profiles in this population should be verified in future prospective and randomized trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available at NHANES website, https://www.cdc.

References

  1. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395(10225):709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  2. Gai Z, Wang T, Visentin M, Kullak-Ublick GA, Fu X, Wang Z (2019) Lipid accumulation and chronic kidney disease. Nutrients 11(4):722. https://doi.org/10.3390/nu11040722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hager MR, Narla AD, Tannock LR (2017) Dyslipidemia in patients with chronic kidney disease. Rev Endocr Metab Disord 18(1):29–40. https://doi.org/10.1007/s11154-016-9402-z

    Article  CAS  PubMed  Google Scholar 

  4. Zubovic SV, Kristic S, Prevljak S, Pasic IS (2016) Chronic kidney disease and lipid disorders. Med Arch 70(3):191–192. https://doi.org/10.5455/medarh.2016.70.191-192

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54. https://doi.org/10.1039/c3mt00185g

    Article  CAS  PubMed  Google Scholar 

  6. Burk RF (2002) Selenium, an antioxidant nutrient. Nutr Clin Care 5:75–79. https://doi.org/10.1046/j.1523-5408.2002.00006.x

    Article  PubMed  Google Scholar 

  7. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  8. Koller LD, Exon JH (1986) The two faces of selenium-deficiency and toxicity–are similar in animals and man. Can J Vet Res 50(3):297–306

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lubos E, Sinning CR, Schnabel RB, Wild PS, Zeller T, Rupprecht HJ et al (2010) Serum selenium and prognosis in cardiovascular disease: results from the AtheroGene study. Atherosclerosis 209(1):271–277. https://doi.org/10.1016/j.atherosclerosis.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  10. Xiang S, Dai Z, Man C, Fan Y (2020) Circulating selenium and cardiovascular or all-cause mortality in the general population: a meta-analysis. Biol Trace Elem Res 195(1):55–62. https://doi.org/10.1007/s12011-019-01847-8

    Article  CAS  PubMed  Google Scholar 

  11. Vinceti M, Filippini T, Wise LA, Rothman KJ (2021) A systematic review and dose-response meta-analysis of exposure to environmental selenium and the risk of type 2 diabetes in nonexperimental studies. Environ Res 197:111210. https://doi.org/10.1016/j.envres.2021.111210

    Article  CAS  PubMed  Google Scholar 

  12. Yarmolinsky J, Bonilla C, Haycock PC, Langdon RJQ, Lotta LA, Langenberg C et al (2018) Circulating selenium and prostate cancer risk: a mendelian randomization analysis. J Natl Cancer Inst 110(9):1035–1038. https://doi.org/10.1093/jnci/djy081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4(2B):593–599. https://doi.org/10.1079/phn2001143

    Article  CAS  PubMed  Google Scholar 

  14. Rayman MP, Stranges S, Griffin BA, Pastor-Barriuso R, Guallar E (2011) Effect of supplementation with high-selenium yeast on plasma lipids: a randomized trial. Ann Intern Med 154(10):656–665. https://doi.org/10.7326/0003-4819-154-10-201105170-00005

    Article  PubMed  Google Scholar 

  15. Huang YQ, Shen G, Lo K, Huang JY, Liu L, Chen CL et al (2020) Association of circulating selenium concentration with dyslipidemia: Results from the NHANES. J Trace Elem Med Biol 58:126438. https://doi.org/10.1016/j.jtemb.2019.126438

    Article  CAS  PubMed  Google Scholar 

  16. Omrani H, Golmohamadi S, Pasdar Y, Jasemi K, Almasi A (2016) Effect of selenium supplementation on lipid profile in hemodialysis patients. J Renal Inj Prev 5(4):179–82. https://doi.org/10.15171/jrip.2016.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie C, Zeng M, Shi Z, Li S, Jiang K, Zhao Y (2022) Association between selenium status and chronic kidney disease in middle-aged and older chinese based on CHNS data. Nutrients 14(13):2695. https://doi.org/10.3390/nu14132695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu CY, Wong CS, Chung CJ, Wu MY, Huang YL, Ao PL et al (2019) The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. J Hazard Mater 375:224–232. https://doi.org/10.1016/j.jhazmat.2019.04.082

    Article  CAS  PubMed  Google Scholar 

  19. Centers for Disease Control and Prevention (CDC), NHANES—history [Internet]. https://www.cdc.gov/nchs/nhanes/history.htm. Accessed 10 Sep 2022

  20. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group (2021) KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int 100(4S):S1–S276. https://doi.org/10.1016/j.kint.2021.05.021

    Article  Google Scholar 

  21. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Article  CAS  PubMed  Google Scholar 

  22. Castañer O, Pintó X, Subirana I, Amor AJ, Ros E, Hernáez Á et al (2020) Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J Am Coll Cardiol 76(23):2712–2724. https://doi.org/10.1016/j.jacc.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  23. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H et al (2016) 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the special contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 253:281–344. https://doi.org/10.1016/j.atherosclerosis.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  24. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106(25):3143–3421

    Article  Google Scholar 

  25. Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, Stalenhoef AF (2012) Endocrine society. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97:2969–2989. https://doi.org/10.1210/jc.2011-3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, ESC Scientific Document Group et al (2020) 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 41(1):111–188. https://doi.org/10.1093/eurheartj/ehz455

    Article  PubMed  Google Scholar 

  27. Jellinger PS, Smith DA, Mehta AE, Ganda O, Handelsman Y, Rodbard HW, AACE Task Force for Management of Dyslipidemia and Prevention of Atherosclerosis et al (2012) American association of clinical endocrinologists’ guidelines for management of dyslipidemia and prevention of atherosclerosis. Endocr Pract 18 Suppl 1:1–78. https://doi.org/10.4158/ep.18.s1.1

    Article  PubMed  Google Scholar 

  28. American Diabetes Association Professional Practice Committee 2 Classification and diagnosis of diabetes: Standards of medical care in diabetes—2022. Diabetes Care 45((Suppl. S1)):S17–S38. https://doi.org/10.2337/dc22-S002

  29. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U (2012) Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380(9838):247–257. https://doi.org/10.1016/S0140-6736(12)60646-1

    Article  PubMed  Google Scholar 

  30. White IR, Royston P, Wood AM (2011) Multiple imputation using chained equations: Issues and guidance for practice. Stat Med 30(4):377–399. https://doi.org/10.1002/sim.4067

    Article  PubMed  Google Scholar 

  31. Ferro CJ, Mark PB, Kanbay M, Sarafidis P, Heine GH, Rossignol P et al (2018) Lipid management in patients with chronic kidney disease. Nat Rev Nephrol 14(12):727–749. https://doi.org/10.1038/s41581-018-0072-9

    Article  CAS  PubMed  Google Scholar 

  32. Ferro CJ, Mark PB, Kanbay M, Sarafidis P, Heine GH, Rossignol P, SHARP Investigators et al (2011) The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377(9784):2181–92. https://doi.org/10.1016/S0140-6736(11)60739-3

    Article  CAS  Google Scholar 

  33. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298(3):299–308. https://doi.org/10.1001/jama.298.3.299

    Article  CAS  PubMed  Google Scholar 

  34. Quispe R, Martin SS, Michos ED, Lamba I, Blumenthal RS, Saeed A et al (2021) Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J 42(42):4324–4332. https://doi.org/10.1093/eurheartj/ehab432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan P, Xu Y, Miao Y, Bai X, Wu Y, Tang Q et al (2021) Association of remnant cholesterol with chronic kidney disease in middle-aged and elderly Chinese: a population-based study. Acta Diabetol 58(12):1615–1625. https://doi.org/10.1007/s00592-021-01765-z

    Article  CAS  PubMed  Google Scholar 

  36. Yu D, Wang Z, Zhang X, Qu B, Cai Y, Ma S et al (2021) Remnant cholesterol and cardiovascular mortality in patients with Type 2 diabetes and incident diabetic nephropathy. J Clin Endocrinol Metab 106(12):3546–3554. https://doi.org/10.1210/clinem/dgab533

    Article  PubMed  Google Scholar 

  37. Minich WB (2022) Selenium metabolism and biosynthesis of selenoproteins in the human body. Biochemistry (Mosc) 87(Suppl 1):S168–S102. https://doi.org/10.1134/S0006297922140139

    Article  CAS  PubMed  Google Scholar 

  38. Bunch DR, Cieslak W, Wang S (2017) Whole blood selenium determination by inductively coupled plasma mass spectrometry. Clin Biochem 50(12):710–713. https://doi.org/10.1016/j.clinbiochem.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  39. Zachara BA, Salak A, Koterska D, Manitius J, Wasowicz W (2004) Selenium and glutathione peroxidases in blood of patients with different stages of chronic renal failure. J Trace Elem Med Biol 17(4):291–299. https://doi.org/10.1016/S0946-672X(04)80031-2

    Article  CAS  PubMed  Google Scholar 

  40. Zachara BA (2015) Selenium and selenium-dependent antioxidants in chronic kidney disease. Adv Clin Chem 68:131–151. https://doi.org/10.1016/bs.acc.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  41. Fu S, Zhang L, Ma F, Xue S, Sun T, Xu Z (2022) Effects of selenium on chronic kidney disease: a mendelian randomization study. Nutrients 14(21):4458. https://doi.org/10.3390/nu14214458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Christensen K, Werner M, Malecki K (2015) Serum selenium and lipid levels: Associations observed in the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Environ Res 140:76–84. https://doi.org/10.1016/j.envres.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  43. Ju W, Ji M, Li X, Li Z, Wu G, Fu X et al (2018) Relationship between higher serum selenium level and adverse blood lipid profile. Clin Nutr 37(5):1512–1517. https://doi.org/10.1016/j.clnu.2017.08.025

    Article  CAS  PubMed  Google Scholar 

  44. Stranges S, Laclaustra M, Ji C, Cappuccio FP, Navas-Acien A, Ordovas JM et al (2010) Higher selenium status is associated with adverse blood lipid profile in British adults. J Nutr 140(1):81–87. https://doi.org/10.3945/jn.109.111252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cold F, Winther KH, Pastor-Barriuso R, Rayman MP, Guallar E, Nybo M et al (2015) Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br J Nutr 114(11):1807–1818. https://doi.org/10.1017/S0007114515003499

    Article  CAS  PubMed  Google Scholar 

  46. Wu Q, Sun X, Chen Q, Zhang X, Zhu Y (2021) Genetically predicted selenium is negatively associated with serum TC, LDL-C and positively associated with HbA1C levels. J Trace Elem Med Biol 67:126785. https://doi.org/10.1016/j.jtemb.2021.126785

    Article  CAS  PubMed  Google Scholar 

  47. Tabrizi R, Akbari M, Moosazadeh M, Lankarani KB, Heydari ST, Kolahdooz F et al (2017) The effects of selenium supplementation on glucose metabolism and lipid profiles among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res 49(11):826–830. https://doi.org/10.1055/s-0043-119544

    Article  CAS  PubMed  Google Scholar 

  48. Cobo G, Lindholm B, Stenvinkel P (2018) Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant 33(suppl_3):iii35–iii40. https://doi.org/10.1093/ndt/gfy175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41(6):443–447. https://doi.org/10.1055/s-0029-1220724

    Article  CAS  PubMed  Google Scholar 

  51. Yu XH, Zheng XL, Tang CK (2015) Nuclear Factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis. Adv Clin Chem 70:1–30. https://doi.org/10.1016/bs.acc.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  52. Samuel VT, Petersen KF, Shulman GI (2010) Shulman, Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375(9733):2267–2277. https://doi.org/10.1016/S0140-6736(10)60408-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spoto B, Pisano A, Zoccali C (2016) Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol 311(6):F1087–F1108. https://doi.org/10.1152/ajprenal.00340

    Article  CAS  PubMed  Google Scholar 

  54. Cardoso BR, Braat S, Graham RM (2021) Selenium status is associated with insulin resistance markers in adults: findings from the 2013 to 2018 National Health and Nutrition Examination Survey (NHANES). Front Nutr 8:696024. https://doi.org/10.3389/fnut.2021.696024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Robberecht H, De Bruyne T, Davioud-Charvet E, Mackrill J, Hermans N (2019) Selenium status in elderly people: longevity and age-related diseases. Curr Pharm Des 25(15):1694–1706. https://doi.org/10.2174/1381612825666190701144709

    Article  CAS  PubMed  Google Scholar 

  56. Guo L, Yang W, Huang Q, Qiang J, Hart JR, Wang W et al (2018) Selenocysteine-specific mass spectrometry reveals tissue-distinct selenoproteomes and candidate selenoproteins. Cell Chem Biol 25(11):1380–1388. https://doi.org/10.1016/j.chembiol.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki KT, Kurasaki K, Okazaki N, Ogra Y (2005) Selenosugar and trimethylselenonium among urinary Se metabolites: dose and age-related changes. Toxicol Appl Pharmacol 206(1):1–8. https://doi.org/10.1016/j.taap.2004.10.018

    Article  CAS  PubMed  Google Scholar 

  58. Donadio JLS, Duarte GBS, Borel P, Cozzolino SMF, Rogero MM (2021) The influence of nutrigenetics on biomarkers of selenium nutritional status. Nutr Rev 79(11):1259–1273. https://doi.org/10.1093/nutrit/nuaa136

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NHANES participants and staff for their contributions of the data and data collection.

Funding

This work was supported by the Guangzhou Municipal Health Commission under Grant 20221A011018.

Author information

Authors and Affiliations

Authors

Contributions

Ziyuan Li: Conceptualization, Methodology, Investigation, Data curation, Writing original draft; Jiahui Lai: Conceptualization, Software, Investigation, Writing – review & editing; Luona Wen: Investigation, Data curation; Qiongmei Chen:Investigation, Data curation; Rongshao Tan: Investigation, Writing–review & editing, Supervision; Xiaoshi Zhong: Investigation, Writing – review & editing, Supervision; Yun Liu: Methodology, Formal analysis, Project administration, Writing – review&editing, Supervision, Funding acquisition;Yan Liu: Conceptualization, Methodology, Formal analysis, Project administration, Writing – review & editing, Supervision.

Corresponding authors

Correspondence to Yun Liu or Yan Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Study protocols for NHANES were approved by the NCHS ethnics review board (Protocol #2011–17, https://www.cdc.gov/nchs/nhanes/irba98.htm). All the participants signed the informed consent before participating in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lai, J., Wen, L. et al. Higher Levels of Blood Selenium are Associated with Higher Levels of Serum Lipid Profile in US Adults with CKD: Results from NHANES 2013–2018. Biol Trace Elem Res 201, 5501–5511 (2023). https://doi.org/10.1007/s12011-023-03608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03608-0

Keywords

Navigation