Skip to main content
Log in

Effects of Co-exposure to Fluoride and Arsenic on TRAF-6 Signaling and NF-κB Pathway of Bone Metabolism

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Little is known about the combined effect of fluoride (F) and arsenic (As) on bone metabolism. This study aims to explore the effect of co-exposure to F and As on the expressions of TNF receptor-associated factor 6 (TRAF-6), nuclear factor-kappa B (NF-κB), and the related factors in cell and animal experiments. With the rats exposed to different doses of F, As, and combined F-As, we found that F exposure doses were positively correlated with the protein expression of receptor activator of nuclear factor-kappa B ligand (RANKL), receptor activator of nuclear factor-kappa B (RANK), TRAF-6, NF-κB, and nuclear factor of activated T cells (NFAT-c1) (P < 0.001). As exposure doses were negatively correlated with RANK, TRAF-6, NF-κB, and NFAT-c1 (P < 0.001). The effect of F and As interaction on the protein expression of RANKL, TRAF-6, NF-κB, and NFAT-c1 was significant in bone tissue (P < 0.05). In the cellular experiment, F could promote the mRNA expression of RANK, TRAF-6, and NFAT-c1. A higher concentration of As could inhibit the mRNA expression of Tartrate-resistant acid phosphatase (TRAP), RANK, TRAF-6, and NFAT-c1. The effect of F and As interaction on the mRNA expression of TRAP, RANK, TRAF-6, and NFATc1 in osteoclasts was significant (P < 0.001). In conclusion, the expression of TRAF-6 and NF-κB pathway was affected by F and As co-exposure in osteogenic differentiation, and As could antagonize the promoting effect of F on the expression of TRAF-6, TRAP, RANKL, RANK, NF-κB, and NFAT-c1 in these exposure levels. These results could provide a scientific basis for understanding the interaction of F and As in bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are available from the corresponding author upon reasonable request.

References

  1. González-Horta C, Ballinas-Casarrubias L, Sánchez-Ramírez B, Ishida MC, Barrera-Hernández A, Gutiérrez-Torres D, Zacarias OL, Saunders RJ, Drobná Z, Mendez MA, García-Vargas G, Loomis D, Stýblo M, Del Razo LM (2015) A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. Int J Environ Res Public Health 12(5):4587–4601

    Article  PubMed  PubMed Central  Google Scholar 

  2. Podgorski J, Berg M (2020) Global threat of arsenic in groundwater. Science 368(6493):845–850. https://doi.org/10.1126/science.aba1510

    Article  CAS  PubMed  Google Scholar 

  3. Yadav AK, Kaushik CP, Haritash AK, Kansal A, Rani N (2006) Defluoridation of groundwater using brick powder as an adsorbent. J Hazard Mater 128(2–3):289–293. https://doi.org/10.1016/j.jhazmat.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  4. Wang W, Xu J, Liu K, Liu X, Li C, Cui C, Zhang Y, Li H (2013) Suppression of Sclerostin and Dickkopf-1 levels in patients with fluorine bone injury. Environ Toxicol Pharmacol 35(3):402–407. https://doi.org/10.1016/j.etap.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  5. Nakamoto T, Rawls HR (2018) Fluoride exposure in early life as the possible root cause of disease in later life. J Clin Pediatr Dent 42(5):325–330. https://doi.org/10.17796/1053-4625-42.5.1

    Article  PubMed  Google Scholar 

  6. Aybar Odstrcil AC, Carino SN, Ricci JC, Mandalunis PM (2010) Effect of arsenic in endochondral ossification of experimental animals. Exp Toxicol Pathol: Off J Ges fur Toxikologische Pathologie 62(3):243–249. https://doi.org/10.1016/j.etp.2009.04.001

    Article  CAS  Google Scholar 

  7. Hu Y-C, Cheng H-L, Hsieh B-S, Huang L-W, Huang T-C, Chang K-L (2012) Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone 50(6):1406–1415. https://doi.org/10.1016/j.bone.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  8. Wu C-T, Lu T-Y, Chan D-C, Tsai K-S, Yang R-S, Liu S-H (2014) Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats. Environ Health Perspect 122(6):559–565. https://doi.org/10.1289/ehp.1307832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jia L, Jin T-Y Combined effect of fluoride and arsenate on gene expression of osteoclast differentiation factor and osteoprotegerin. Biomed Environ Sci 19(5):375–379. https://pubmed.ncbi.nlm.nih.gov/17190191. Accessed 20 Jul 2022

  10. Hong F, Zheng C, Xu D-g, Qian Y-l (2013) Chronic combined effects of fluoride and arsenite on the Runx2 and downstream related factors of bone metabolism in rats. Zhonghua Yu Fang Yi Xue Za Zhi 47(9):794–798. https://doi.org/10.3760/cma.j.issn.0253-9624.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  11. Zeng Q-b, Xu Y-y, Yu X, Yang J, Hong F, Zhang A-h (2014) Arsenic may be involved in fluoride-induced bone toxicity through PTH/ PKA/AP1 signaling pathway. Environ Toxicol Pharmacol 37(1):228–233. https://doi.org/10.1016/j.etap.2013.11.027

    Article  CAS  PubMed  Google Scholar 

  12. Park E, Lee CG, Lim E, Hwang S, Yun SH, Kim J, Jeong H, Yong Y, Yun S-H, Choi CW, Jin H-S, Jeong S-Y (2021) Osteoprotective effects of loganic acid on osteoblastic and osteoclastic cells and osteoporosis-induced mice. Int J Mole Sci 22(1):233. https://doi.org/10.3390/ijms22010233

    Article  CAS  Google Scholar 

  13. Ma Z, Li S, Sun Y (2020) Effect of enhanced masticatory force on OPG, RANKL and MGF in alveolar bone of ovariectomized rats. J Appl Oral Sci 28:e20190409. https://doi.org/10.1590/1678-7757-2019-0409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiao L, Liu X, He Y, Zhang J, Huang H, Bian W, Chilufya MM, Zhao Y, Han J (2021) Progress of signaling pathways, stress pathways and epigenetics in the pathogenesis of skeletal fluorosis. Int J Mole Sci 22(21):11932. https://doi.org/10.3390/ijms222111932

    Article  CAS  Google Scholar 

  15. Chung JY, Lu M, Yin Q, Lin S-C, Wu H (2007) Molecular basis for the unique specificity of TRAF6. Adv Exp Med Biol 597:122–130. https://doi.org/10.1007/978-0-387-70630-6_10

    Article  PubMed  Google Scholar 

  16. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13(8):1015–1024. https://doi.org/10.1101/gad.13.8.1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iotsova V, Caamaño J, Loy J, Yi Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-|[kappa]|B1 and NF-|[kappa]|B2. Nat Med 3(11):1285. https://doi.org/10.1038/nm1197-1285

    Article  CAS  PubMed  Google Scholar 

  18. Xu S, Li S, Liu X, Tan K, Zhang J, Li K, Bai X, Zhang Y (2021) Rictor is a novel regulator of TRAF6/TRAF3 in osteoclasts. J Bone Mineral Res: Off J Am Soc Bone Mineral Res 36(10):2053–2064. https://doi.org/10.1002/jbmr.4398

    Article  CAS  Google Scholar 

  19. van Dam PA, Verhoeven Y, Trinh XB (2020) The non-bone-related role of RANK/RANKL signaling in cancer. Adv Exp Med Biol 1277:53–62. https://doi.org/10.1007/978-3-030-50224-9_3

    Article  CAS  PubMed  Google Scholar 

  20. Li R, Gong Z, Yu Y, Niu R, Bian S, Sun Z (2022) Alleviative effects of exercise on bone remodeling in fluorosis mice. Biol Trace Elem Res 200(3):1248–1261. https://doi.org/10.1007/s12011-021-02741-y

    Article  CAS  PubMed  Google Scholar 

  21. Liu X-L, Song J, Liu K-J, Wang W-P, Xu C, Zhang Y-Z, Liu Y (2015) Role of inhibition of osteogenesis function by Sema4D/Plexin-B1 signaling pathway in skeletal fluorosis in vitro. J Huazhong Univ Sci Technolog Med Sci 35(5):712–715. https://doi.org/10.1007/s11596-015-1495-1

    Article  CAS  PubMed  Google Scholar 

  22. Gao M, Sun L, Xu K, Zhang L, Zhang Y, He T, Sun R, Huang H, Zhu J, Zhang Y, Zhou G, Ba Y (2020) Association between low-to-moderate fluoride exposure and bone mineral density in Chinese adults: Non-negligible role of RUNX2 promoter methylation. Ecotoxicol Environ Saf 203:111031. https://doi.org/10.1016/j.ecoenv.2020.111031

    Article  CAS  PubMed  Google Scholar 

  23. Sun R, Zhou G, Liu L, Ren L, Xi Y, Zhu J, Huang H, Li Z, Li Y, Cheng X, Ba Y (2020) Fluoride exposure and CALCA methylation is associated with the bone mineral density of Chinese women. Chemosphere 253:126616. https://doi.org/10.1016/j.chemosphere.2020.126616

    Article  CAS  PubMed  Google Scholar 

  24. Yang H, Yao J, He X, Li B (2011) Experimental study of combined effects of fluoride and arsenic on bone mineral density in rats. Chin J Osteoporo 17(05):393–396. https://doi.org/10.3969/j.issn.1006-7108.2011.05.006 (in Chinese)

    Article  CAS  Google Scholar 

  25. Yang H, Liu B, Luan L, Sun H, Zhang P, Li B (2012) Experimental study of the effect of arsenic poisoning on bone mineral density in rats. Chin J Osteoporos 18(02):146–148. https://doi.org/10.3969/j.issn.1006-7108.2012.02.012 (in Chinese)

    Article  CAS  Google Scholar 

  26. Li H, Qin Z, Wang B, Hu J, Hong F (2018) Role of osteoprotegerin and receptor activator of nuclear factor-KB ligand in bone toxicity in rats co-exposed to fluoride and arsenite. Chin J Eindemiol 37(06):461–466. https://doi.org/10.3760/cma.j.issn.2095-4255.2018.06.007 (in Chinese)

    Article  Google Scholar 

  27. Jiang N, Guo F, Xu W, Zhang Z, Jin H, Shi L, Zhang X, Gao J, Xu H (2020) Effect of fluoride on osteocyte-driven osteoclastic differentiation. Toxicology 436:152429. https://doi.org/10.1016/j.tox.2020.152429

    Article  CAS  PubMed  Google Scholar 

  28. Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZQ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279(25):26475–26480. https://doi.org/10.1074/jbc.M313973200

    Article  CAS  PubMed  Google Scholar 

  29. Kim MS, Yang Y-M, Son A, Tian YS, Lee S-I, Kang SW, Muallem S, Shin DM (2010) RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem 285(10):6913–6921. https://doi.org/10.1074/jbc.M109.051557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7(4):292–304. https://doi.org/10.1038/nri2062

    Article  CAS  PubMed  Google Scholar 

  31. Xie Y, Yu Y, Wan L, Chen X (2012) Effect of fluoride on expression of CaN mRNA and protein bone tissue of rats. Chin J Pathol 11:761–764. https://doi.org/10.3760/cma.j.issn.0529-5807.2012.11.011 (in Chinese)

    Article  CAS  Google Scholar 

  32. Yang X, Jin Z, Zhang J, Qin Z, Wang B, Zhan S, Feng H (2019) Effects of combined exposure to fluoride and arsenic on expressions of TRAF-6, NF-κB1, NFATc1, and TRAP mRNA in a co-culture system of osteoblasts and osteoclasts. J Environ Occup Med 36(01):26–32. https://doi.org/10.13213/j.cnki.jeom.2019.18512 (in Chinese)

    Article  CAS  Google Scholar 

  33. Chou H, Grant MP, Bolt AM, Guilbert C, Plourde D, Mwale F, Mann KK (2021) Tungsten increases sex-specific osteoclast differentiation in murine bone. Toxicol Sci 179(1):135–146. https://doi.org/10.1093/toxsci/kfaa165

    Article  CAS  PubMed  Google Scholar 

  34. Zeng Q, Xu Y, Yu X, Yang J, Hong F, Zhang A (2019) Silencing GSK3β instead of DKK1 can inhibit osteogenic differentiation caused by co-exposure to fluoride and arsenic. Bone 123:196–203. https://doi.org/10.1016/j.bone.2019.03.016

    Article  CAS  PubMed  Google Scholar 

  35. Tian X, Xie J, Chen X, Dong N, Feng J, Gao Y, Tian F, Zhang W, Qiu Y, Niu R, Ren X, Yan X (2020) Deregulation of autophagy is involved in nephrotoxicity of arsenite and fluoride exposure during gestation to puberty in rat offspring. Arch Toxicol 94(3):749–760. https://doi.org/10.1007/s00204-019-02651-y

    Article  CAS  PubMed  Google Scholar 

  36. Yang X, Hong F, Xie W, Zhang J, Jin Z, Qin Z (2019) Effects of joint exposure to fluoride and arsenic on OPG/RANKL regulating osteoclast differentiation. J Environ Health 36(04):305–310. https://doi.org/10.16241/j.cnki.1001-5914.2019.04.006 (in Chinese)

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 82173566).

Author information

Authors and Affiliations

Authors

Contributions

Chan Nie analyzed the data, prepared figures and tables, and wrote the paper. Bingjie Wang, Hao Li, and Xing Yang designed and performed the experiments, and prepared figures and tables. Feng Hong conceived the experiments and reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Feng Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

This study was performed according to the national and institutional guidelines and approved by the Animal Experimental Ethical Committee of Guizhou Medical University (approval number: 1413060).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 122 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, C., Hu, J., Wang, B. et al. Effects of Co-exposure to Fluoride and Arsenic on TRAF-6 Signaling and NF-κB Pathway of Bone Metabolism. Biol Trace Elem Res 201, 4447–4455 (2023). https://doi.org/10.1007/s12011-022-03508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03508-9

Keywords

Navigation