Skip to main content

Advertisement

Log in

Association of Urinary Strontium with Cardiovascular Disease Among the US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated the effects of environmental metals on the cardiovascular system. However, the relationship of strontium (Sr) to cardiovascular disease (CVD) in the general population has not been established. This cross-sectional study aimed to investigate the association between urinary Sr (U-Sr) and CVD in the US adults using data of 5255 participants from the National Health and Nutrition Examination Survey (NHANES) 2011–2016. Multivariable logistic regression and restricted cubic spline (RCS) regression were performed to assess the association between U-Sr and CVD. After multivariable adjustments, compared to the lowest quartile, the adjusted odds ratios (ORs) of CVD with 95% confidence intervals (CIs) across the quartiles were 0.65 (0.46, 0.92), 0.87 (0.61, 1.25), and 0.78 (0.55, 1.10). RCS plot revealed a nonlinear relationship between U-Sr levels and CVD (P for nonlinearity = 0.004). Threshold effect analysis identified the inflection point of U-Sr for the curve was 90.18 μg/g urinary creatinine (μg/g UCr). Each 1-unit increase in U-Sr was associated with a 1.1% decrease in CVD (OR 0.989; 95% CI 0.980–0.998) on the left side of the inflection point, but no significant association was observed on the right side of the inflection point. This study suggests a nonlinear association of U-Sr with CVD prevalence in the US general adults. These findings may have positive implications for the determination of appropriate Sr levels for public cardiovascular health. Given the cross-sectional study design, further prospective studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the NHANES website (https://www.cdc.gov/nchs/nhanes/index.htm).

Abbreviations

AP:

Angina pectoris

BMI:

Body mass index

CHD:

Coronary heart disease

CHF:

Congestive heart failure

CI:

Confidence interval

CVD:

Cardiovascular disease

DAG:

Directed acyclic graph

HDL-C:

High-density lipoprotein cholesterol

ICP-MS:

Inductively coupled plasma mass spectrometry

NHANES:

National Health and Nutrition Examination Survey

PIR:

The ratio of family income to poverty

RCS:

Restricted cubic spline

TC:

Total cholesterol

UCr:

Urinary creatinine

U-Sr:

Urinary strontium

References

  1. Kahleova H, Levin S, Barnard ND (2018) Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis 61(1):54–61. https://doi.org/10.1016/j.pcad.2018.05.002

    Article  PubMed  Google Scholar 

  2. Khera AV, Kathiresan S (2017) Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 18(6):331–344. https://doi.org/10.1038/nrg.2016.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cifkova R, Dominiczak AF et al (2018) Hypertension. Nat Rev Dis Primers 4:18014. https://doi.org/10.1038/nrdp.2018.14

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhao D, Liu J, Wang M, Zhang X, Zhou M (2019) Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol 16(4):203–212. https://doi.org/10.1038/s41569-018-0119-4

    Article  PubMed  Google Scholar 

  5. Nigra AE, Ruiz-Hernandez A, Redon J, Navas-Acien A, Tellez-Plaza M (2016) Environmental metals and cardiovascular disease in adults: a systematic review beyond lead and cadmium. Curr Environ Health Rep 3(4):416–433. https://doi.org/10.1007/s40572-016-0117-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T et al (2018) Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362:k3310. https://doi.org/10.1136/bmj.k3310

    Article  PubMed  PubMed Central  Google Scholar 

  7. Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA (2014) Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 168(6):812–822. https://doi.org/10.1016/j.ahj.2014.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Messner B, Bernhard D (2010) Cadmium and cardiovascular diseases: cell biology, pathophysiology, and epidemiological relevance. Biometals 23(5):811–822. https://doi.org/10.1007/s10534-010-9314-4

    Article  CAS  PubMed  Google Scholar 

  9. Xing M, Jiang Y, Bi W, Gao L, Zhou YL, Rao SL et al (2021) Strontium ions protect hearts against myocardial ischemia/reperfusion injury. Sci Adv 7(3):eabe0726. https://doi.org/10.1126/sciadv.abe0726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian Z, Wang Y, Zheng J (2020) Assessment of exposure to toxic metals and measures to address deficiency of essential trace elements in young children in rural Hubei. China Environ Sci Pollut Res Int 27(17):21581–21589. https://doi.org/10.1007/s11356-020-08750-z

    Article  CAS  PubMed  Google Scholar 

  11. Burger A, Lichtscheidl I (2019) Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. Sci Total Environ 653:1458–1512. https://doi.org/10.1016/j.scitotenv.2018.10.312

    Article  CAS  PubMed  Google Scholar 

  12. Varo P, Saari E, Paaso A, Koivistoinen P (1982) Strontium in Finnish foods. Int J Vitam Nutr Res 52(3):342–350

    CAS  PubMed  Google Scholar 

  13. Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588. https://doi.org/10.1016/j.bone.2004.04.026

    Article  CAS  PubMed  Google Scholar 

  14. Miao Y, Liu L, Liu C, Deng YL, Chen PP, Luo Q et al (2021) Urinary biomarker of strontium exposure is positively associated with semen quality among men from an infertility clinic. Ecotoxicol Environ Saf 208:111694. https://doi.org/10.1016/j.ecoenv.2020.111694

    Article  CAS  PubMed  Google Scholar 

  15. NMIC (2021) National Minerals Information Center: Mineral Commodity Summaries 2021. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf. Accessed 3 July 2021

  16. Fang N, Li Y, Xu YS, Ma D, Fu P, Gao HQ et al (2006) Serum concentrations of IL-2 and TNF-alpha in patients with painful bone metastases: correlation with responses to 89SrCl2 therapy. J Nucl Med 47(2):242–246

    CAS  PubMed  Google Scholar 

  17. Turner SL, Gruenewald S, Spry N, Gebski V, Metastron Users G (2001) Less pain does equal better quality of life following strontium-89 therapy for metastatic prostate cancer. Br J Cancer 84(3):297–302. https://doi.org/10.1054/bjoc.2000.1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Serruys PW, Sianos G, van der Giessen W, Bonnier HJ, Urban P, Wijns W et al (2002) Intracoronary beta-radiation to reduce restenosis after balloon angioplasty and stenting; the Beta Radiation In Europe (BRIE) study. Eur Heart J 23(17):1351–1359. https://doi.org/10.1053/euhj.2001.3153

    Article  CAS  PubMed  Google Scholar 

  19. Regar E, Kozuma K, Sianos G, Coen VL, van der Giessen WJ, Foley D et al (2002) Routine intracoronary beta-irradiation. Acute and one year outcome in patients at high risk for recurrence of stenosis. Eur Heart J 23(13):1038–1044. https://doi.org/10.1053/euhj.2001.3045

    Article  CAS  PubMed  Google Scholar 

  20. Bass BG, Ciulla EM, Klop P, Van Baal S (1975) Some electrical and mechanical effects of strontium on toad ventricular muscle: comparison to calcium. J Physiol 252(3):547–564. https://doi.org/10.1113/jphysiol.1975.sp011158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468. https://doi.org/10.1056/NEJMoa022436

    Article  CAS  PubMed  Google Scholar 

  22. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–2822. https://doi.org/10.1210/jc.2004-1774

    Article  CAS  PubMed  Google Scholar 

  23. Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P et al (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20(10):1663–1673. https://doi.org/10.1007/s00198-008-0825-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reginster JY (2014) Cardiac concerns associated with strontium ranelate. Expert Opin Drug Saf 13(9):1209–1213. https://doi.org/10.1517/14740338.2014.939169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Curtis EM, Cooper C, Harvey NC (2021) Cardiovascular safety of calcium, magnesium and strontium: what does the evidence say? Aging Clin Exp Res 33(3):479–494. https://doi.org/10.1007/s40520-021-01799-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Federman JH, Sachter JJ (1997) Status asthmaticus in a paramedic following exposure to a roadside flare: a case report. J Emerg Med 15(1):87–89. https://doi.org/10.1016/s0736-4679(96)00245-4

    Article  CAS  PubMed  Google Scholar 

  27. Wu CF, Li YR, Kuo IC, Hsu SC, Lin LY, Su TC (2012) Investigating the association of cardiovascular effects with personal exposure to particle components and sources. Sci Total Environ 431:176–182. https://doi.org/10.1016/j.scitotenv.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  28. Tang XY, Zhang Q, Dai DZ, Ying HJ, Wang QJ, Dai Y (2008) Effects of strontium fructose 1,6-diphosphate on expression of apoptosis-related genes and oxidative stress in testes of diabetic rats. Int J Urol 15(3):251–256. https://doi.org/10.1111/j.1442-2042.2007.01980.x

    Article  CAS  PubMed  Google Scholar 

  29. Yalin S, Sagir O, Comelekoglu U, Berkoz M, Eroglu P (2012) Strontium ranelate treatment improves oxidative damage in osteoporotic rat model. Pharmacol Rep 64(2):396–402. https://doi.org/10.1016/s1734-1140(12)70780-6

    Article  CAS  PubMed  Google Scholar 

  30. de Melo NR, Martins MR, da Silva Junior FS, de Melo Leite AC, Girao VC, de Queiroz CF et al (2015) Strontium ranelate analgesia in arthritis models is associated to decreased cytokine release and opioid-dependent mechanisms. Inflamm Res 64(10):781–787. https://doi.org/10.1007/s00011-015-0860-7

    Article  CAS  Google Scholar 

  31. Zhang H, Zhou X, Wang L, Wang W, Xu J (2018) Concentrations and potential health risks of strontium in drinking water from Xi’an, Northwest China. Ecotoxicol Environ Saf 164:181–188. https://doi.org/10.1016/j.ecoenv.2018.08.017

    Article  CAS  PubMed  Google Scholar 

  32. Bao W, Liu B, Rong S, Dai SY, Trasande L, Lehmler HJ (2020) Association between bisphenol a exposure and risk of all-cause and cause-specific mortality in US adults. JAMA Netw Open 3(8):e2011620. https://doi.org/10.1001/jamanetworkopen.2020.11620

    Article  PubMed  PubMed Central  Google Scholar 

  33. Inoue K, Ritz B, Brent GA, Ebrahimi R, Rhee CM, Leung AM (2020) Association of subclinical hypothyroidism and cardiovascular disease with mortality. JAMA Netw Open 3(2):e1920745. https://doi.org/10.1001/jamanetworkopen.2019.20745

    Article  PubMed  Google Scholar 

  34. CDC (2015) Centers for Disease Control and Prevention: National Health and Nutrition Examination Survey Laboratory Procedure Manual. https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/labmethods/UM_UMS_UTAS_UTASS_H_MET.pdf. Accessed 8 July 2021

  35. Zhang Y, Huang M, Zhuang P, Jiao J, Chen X, Wang J et al (2018) Exposure to acrylamide and the risk of cardiovascular diseases in the National Health and Nutrition Examination Survey 2003–2006. Environ Int 117:154–163. https://doi.org/10.1016/j.envint.2018.04.047

    Article  CAS  PubMed  Google Scholar 

  36. Xu C, Weng Z, Zhang L, Xu J, Dahal M, Basnet TB et al (2021) HDL cholesterol: a potential mediator of the association between urinary cadmium concentration and cardiovascular disease risk. Ecotoxicol Environ Saf 208:111433. https://doi.org/10.1016/j.ecoenv.2020.111433

    Article  CAS  PubMed  Google Scholar 

  37. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 39(33):3021–3104. https://doi.org/10.1093/eurheartj/ehy339

    Article  PubMed  Google Scholar 

  38. Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R et al (2022) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care 45(Supplement_1):S17–S38. https://doi.org/10.2337/dc22-S002

    Article  Google Scholar 

  39. Henriquez-Hernandez LA, Romero D, Gonzalez-Antuna A, Gonzalez-Alzaga B, Zumbado M, Boada LD et al (2020) Biomonitoring of 45 inorganic elements measured in plasma from Spanish subjects: a cross-sectional study in Andalusian population. Sci Total Environ 706:135750. https://doi.org/10.1016/j.scitotenv.2019.135750

    Article  CAS  PubMed  Google Scholar 

  40. Bernhard D, Rossmann A, Henderson B, Kind M, Seubert A, Wick G (2006) Increased serum cadmium and strontium levels in young smokers: effects on arterial endothelial cell gene transcription. Arterioscler Thromb Vasc Biol 26(4):833–838. https://doi.org/10.1161/01.ATV.0000205616.70614.e5

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Xu C, Guo Y, Jin X, Cheng Z, Tao Q et al (2022) Increased hypertension risk for the elderly with high blood levels of strontium and lead. Environ Geochem Health. https://doi.org/10.1007/s10653-022-01317-6

  42. Yang Q, Liu Y, Liu L, Zhang L, Lei J, Wang Q et al (2022) Exposure to multiple metals and diabetes mellitus risk in dong ethnicity in China: from the China multi-ethnic cohort study. Environ Geochem Health. https://doi.org/10.1007/s10653-022-01366-x

  43. Jiang Q, Xiao Y, Long P, Li W, Yu Y, Liu Y et al (2021) Associations of plasma metal concentrations with incident dyslipidemia: prospective findings from the Dongfeng-Tongji cohort. Chemosphere 285:131497. https://doi.org/10.1016/j.chemosphere.2021.131497

    Article  CAS  PubMed  Google Scholar 

  44. Goudarzi M, Weber WM, Chung J, Doyle-Eisele M, Melo DR, Mak TD et al (2015) Serum dyslipidemia is induced by internal exposure to strontium-90 in mice, lipidomic profiling using a data-independent liquid chromatography-mass spectrometry approach. J Proteome Res 14(9):4039–4049. https://doi.org/10.1021/acs.jproteome.5b00576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Z (2016) Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann Transl Med 4(2):30. https://doi.org/10.3978/j.issn.2305-5839.2015.12.63

    Article  PubMed  PubMed Central  Google Scholar 

  46. Park SY, Freedman ND, Haiman CA, Le Marchand L, Wilkens LR, Setiawan VW (2017) Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann Intern Med 167(4):228–235. https://doi.org/10.7326/M16-2472

    Article  PubMed  PubMed Central  Google Scholar 

  47. Harrell FE Jr (2015) Regression modeling strategies: with applications, to linear models, logistic and ordinal regression, and survival analysis, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  48. Wu W, Zhang K, Jiang S, Liu D, Zhou H, Zhong R et al (2018) Association of co-exposure to heavy metals with renal function in a hypertensive population. Environ Int 112:198–206. https://doi.org/10.1016/j.envint.2017.12.023

    Article  CAS  PubMed  Google Scholar 

  49. Jaddoe VW, de Jonge LL, Hofman A, Franco OH, Steegers EA, Gaillard R (2014) First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ 348:g14. https://doi.org/10.1136/bmj.g14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Greenland S (1989) Modeling and variable selection in epidemiologic analysis. Am J Public Health 79(3):340–349. https://doi.org/10.2105/ajph.79.3.340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bai Y, Feng W, Wang S, Zhang X, Zhang W, He M et al (2016) Essential metals zinc, selenium, and strontium protect against chromosome damage caused by polycyclic aromatic hydrocarbons exposure. Environ Sci Technol 50(2):951–960. https://doi.org/10.1021/acs.est.5b03945

    Article  CAS  PubMed  Google Scholar 

  52. Dawson EB, Frey MJ, Moore TD, McGanity WJ (1978) Relationship of metal metabolism to vascular disease mortality rates in Texas. Am J Clin Nutr 31(7):1188–1197. https://doi.org/10.1093/ajcn/31.7.1188

    Article  CAS  PubMed  Google Scholar 

  53. Mao L, Xia L, Chang J, Liu J, Jiang L, Wu C et al (2017) The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater 61:217–232. https://doi.org/10.1016/j.actbio.2017.08.015

    Article  CAS  PubMed  Google Scholar 

  54. Yang F, Yi X, Guo J, Xu S, Xiao Y, Huang X et al (2019) Association of plasma and urine metals levels with kidney function: a population-based cross-sectional study in China. Chemosphere 226:321–328. https://doi.org/10.1016/j.chemosphere.2019.03.171

    Article  CAS  PubMed  Google Scholar 

  55. Gonzalez MD, Vassalle M (1990) Strontium induces oscillatory potentials in sheep cardiac Purkinje fibers. Int J Cardiol 27(1):87–99. https://doi.org/10.1016/0167-5273(90)90195-b

    Article  CAS  PubMed  Google Scholar 

  56. Aimaiti A, Maimaitiyiming A, Boyong X, Aji K, Li C, Cui L (2017) Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway. Stem Cell Res Ther 8(1):282. https://doi.org/10.1186/s13287-017-0726-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lis GJ, Czapla-Masztafiak J, Kwiatek WM, Gajda M, Jasek E, Jasinska M et al (2014) Distribution of selected elements in calcific human aortic valves studied by microscopy combined with SR-muXRF: influence of lipids on progression of calcification. Micron 67:141–148. https://doi.org/10.1016/j.micron.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  58. Lopez-Jimenez F, Batsis JA, Roger VL, Brekke L, Ting HH, Somers VK (2009) Trends in 10-year predicted risk of cardiovascular disease in the United States, 1976 to 2004. Circ Cardiovasc Qual Outcomes 2(5):443–450. https://doi.org/10.1161/CIRCOUTCOMES.108.847202

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the National Health and Nutrition Examination Survey (NHANES) staff and participants for providing the publicly available data.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.B.W, J.T.S, and L.S.W; Methodology: S.B.W, J.T.S, L.F.G, and Y.X.W; Formal analysis and investigation: S.B.W and C.D; Visualization: S.B.W, L.F.G, and Y.X.W; Writing—original draft preparation: S.B.W and J.T.S; Writing—review and editing: H.W and Y.M; Project administration: H.W and L.S.W; Supervision: L.S.W. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liansheng Wang.

Ethics declarations

Ethics Approval and Consent to Participate

The NHANES 2011–2016 was approved by the NCHS Research Ethics Review Board (Protocol #2011–17), and each participant signed the written informed consent.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 228 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Sun, J., Gu, L. et al. Association of Urinary Strontium with Cardiovascular Disease Among the US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey. Biol Trace Elem Res 201, 3583–3591 (2023). https://doi.org/10.1007/s12011-022-03451-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03451-9

Keywords

Navigation