Skip to main content

Advertisement

Log in

Zinc Oxide Nanoparticles Boost the Immune Responses in Oreochromis niloticus and Improve Disease Resistance to Aeromonas hydrophila Infection

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 05 May 2022

This article has been updated

Abstract

Zinc is an essential element affecting immune responses in aquatic organisms. In the present research, the immunomodulating effect of zinc oxide nanoparticles (ZnO NPs) was studied in Nile tilapia (Oreochromis niloticus). The minimum inhibitory concentration of zinc oxide nanoparticles (ZnO NPs) for Aeromonas hydrophila was estimated at 60 µg/mL. To evaluate the efficacy of ZnO NPs for improving disease resistance against A. hydrophila, three hundred fish were divided into 5 groups. Fish in the group T1 maintained on the control feed, T2 and T3 feed on ZnO at 60 and 30 µg/g, while T4 and T5 received ZnO NPs at 60 and 30 µg/g, respectively for 8 weeks. Immune responses were evaluated by determining the phagocytic activity, serum antibacterial activity, lysozymes, respiratory burst activity, and also gene expression of immunoglobin M-2, tumor necrosis factor-α, interleukin (IL)-1β, heat shock proteins, IL-10, insulin growth factor 1, transforming growth factor-β2, superoxide dismutase enzyme, and catalase enzyme genes. Results indicated that groups that received ZnO NPs have exaggerated immune response and upregulation in the most of expressed immune-related genes. After the feeding trial, all groups were experimentally infected with A. hydrophila, and the mortality rate was monitored. Among all the treated groups, a higher survival rate and disease resistance were observed for fish that received ZnO NPs at 30 and 60 µg/g. The inclusion of ZnO NPs in O. niloticus feed improves both fish immune response and disease resistance against A. hydrophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available on request from the authors.

Change history

References

  1. FAO, Food and Agriculture Organization (2018) Global aquaculture production Rome, Italy. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en

  2. Mabroke RS, Tahoun AM, El-Haroun ER, Suloma A (2012) Influence of dietary protein on growth, reproduction, seed chemical composition and larval survival rate of Nile tilapia (Oreochromis niloticus) broodstocks of different size groups under hapa-in-pond hatchery system. Araban Aquac Soc 7(2):203–220

    Google Scholar 

  3. Suloma A, Tahoun AM, Mabrok RS (2017) Development of brood-stock diets for Nile tilapia under hapa-in-pond hatchery system; optimal dietary vitamin C level for the optimum reproductive performance and fry survival. J Aquac Res Dev S2:010. https://doi.org/10.4172/2155-9546.S2-010

    Article  Google Scholar 

  4. Sherif AH, Gouda MY, Naena NA, Ali AH (2020) Alternate weekly exchanges of feeding regime affect the diversity of intestinal microbiota and immune status of Nile tilapia Oreochromis niloticus. Aquac Res 51(10):4327–4339. https://doi.org/10.1111/are.14778

    Article  CAS  Google Scholar 

  5. Antony N, Balachandran S, Mohanan PV (2016) Immobilization of diastase α-amylase on nano zinc oxide. Food Chem 211:624–630. https://doi.org/10.1016/j.foodchem.2016.05.049

    Article  CAS  Google Scholar 

  6. NRC, National Research Council (2011) Nutrient requirements of fish and shrimp. National Academy Press, Washington, p 392

    Google Scholar 

  7. Tawfik M, Moustafa M, Abumourad IMK, El-Meliegy E, Refai M (2017) Evaluation of nano zinc oxide feed additive on tilapia growth and immunity. In 15th International Conference on Environmental Science and Technology, Rhodes, Greece (Vol. 1342, No. 1, pp. 1–9)

  8. Uniyal S, Garg AK, Jadhav SE, Chaturvedi VK, Mohanta RK (2017) Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livest Sci 204:59–64. https://doi.org/10.1016/j.livsci.2017.08.009

    Article  Google Scholar 

  9. Kumar N, Ambasankar K, Krishnani KK, Bhushan S, Minhas PS (2016) Dietary pyridoxine protects against stress and maintains immunohaematological status in Chanos chanos exposed to endosulfan. Basic Clin Pharmacol Toxicol 119(3):297–308. https://doi.org/10.1111/bcpt.12589

    Article  CAS  Google Scholar 

  10. Case CL, Carlson MS (2002) Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J Anim Sci 80(7):1917–1924. https://doi.org/10.2527/2002.8071917x

    Article  CAS  Google Scholar 

  11. Zalewski PD, Truong-Tran AQ, Grosser D, Jayaram L, Murgia C, Ruffin RE (2005) Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets. A review. Pharmacol Ther 105(2):127–149. https://doi.org/10.1016/j.pharmthera.2004.09.004

    Article  CAS  Google Scholar 

  12. Satoh S, Poe WE, Wilson RP (1989) Effect of supplemental phytate and/or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebrae of channel catfish. Aquaculture 80(1–2):155–161

    Article  CAS  Google Scholar 

  13. Jiang W, Yang K, Vachet RW, Xing B (2010) Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy. Langmuir 26(23):18071–18077. https://doi.org/10.1021/la103738e

    Article  CAS  Google Scholar 

  14. Lyon DY, Thill A, Rose J, Alvarez PJJ (2007) Environmental nanotechnology: applications and impacts of nanomaterials. In: Wiesner M, Bottero J-Y (Eds.). McGraw Hill Publishing, New York, 445–480

  15. Daneshvar N, Aber S, Dorraji MS, Khataee AR, Rasoulifard MH (2007) Preparation and investigation of photocatalytic properties of ZnO nanocrystals: effect of operational parameters and kinetic study. Int J Nuc Quan Eng 1(5):62–67. https://doi.org/10.5281/zenodo.1072778

    Article  Google Scholar 

  16. Sherif AH, El‐Sharawy MES, El‐Samannoudy SI, Adel Seida A, Sabry NM, Eldawoudy M, ..., Younis NA (2021) The deleterious impacts of dietary titanium dioxide nanoparticles on the intestinal microbiota, antioxidant enzymes, diseases resistances and immune response of Nile tilapia. Aquac Res 52(12): 6699-6707.‏ https://doi.org/10.1111/are.15539

  17. Li YLPXJ, Li YBHZQ, Qing-Song HLL (2006) Determination of seven trace elements in tea samples by atomic absorption spectrometry. Chin J Spectrosc Lab 5

  18. Ravikumar S, Gokulakrishnan R, Selvanathan K, Selvam S (2011) Antibacterial activity of metal oxide nanoparticles against ophthalmic pathogens. Int J Pharm Res Dev 3(5):122–127

    Google Scholar 

  19. Austin B, Austin DA (2012) Bacterial fish pathogens: disease of farmed and wild fish, 3rd edition, 112–115

  20. Faulmann E, Cuchens MA, Lobb CJ, Miller NW, Clem LW (1983) An effective culture system for studying in vitro mitogenic responses of channel catfish lymphocytes. Trans Am Fish Soc 112(5):673–679. https://doi.org/10.1577/1548-8659

    Article  CAS  Google Scholar 

  21. Kawahara E, Ueda T, Nomura S (1991) In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathol 26(4):213–214

    Article  Google Scholar 

  22. Kajita Y, Sakai M, Atsuta S, Kobayashi M (1990) The immunomodulatory effects of levamisole on rainbow trout, Oncorhynchus mykiss. Fish Pathol 25(2):93–98

    Article  CAS  Google Scholar 

  23. Helal R, Melzig MF (2008) Determination of lysozyme activity by a fluorescence technique in comparison with the classical turbidity assay. Pharmazie 63(6):415–419

    CAS  Google Scholar 

  24. Jang SI, Hardie LJ, Secombes CJ (1995) Elevation of rainbow trout Oncorhynchus mykiss macrophage respiratory burst activity with macrophage-derived supernatants. J Leukoc Biol 57(6):943–947. https://doi.org/10.1002/jlb.57.6.943

    Article  CAS  Google Scholar 

  25. Livak KJ, Schmittgen HD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  26. Buonocore F, Randelli E, Bird S, Secombes CJ, Facchiano A, Costantini S, Scapigliati G (2007) Interleukin-10 expression byreal-time PCR and homology modelling analysis in the European sea bass (Dicentrarchus labrax L.). Aquaculture 270(1–4):512–522. https://doi.org/10.1016/j.aquaculture2007.05.040

    Article  CAS  Google Scholar 

  27. Ruangpan L, Kitao T, Yoshida T (1986) Protective efficacy of Aeromonas hydrophila vaccines in Nile tilapia. Vet Immunol Immunopathol 12(1–4):345–350. https://doi.org/10.1016/0165-2427(86)90139-X

    Article  CAS  Google Scholar 

  28. El-Bahar HM, Ali NG, Aboyadak IM, Khalil SA, Ibrahim MS (2019) Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. Int Microbiol. https://doi.org/10.1007/s10123-019-00075-3

    Article  Google Scholar 

  29. Madigan MT, Martinko J (2005) Brock biology of microorganisms, 11th edn. Prentice Hall

    Google Scholar 

  30. Public Health Agency of Canada (2010) The Honourable Leona Aglukkaq, P.C., M.P. Minister of Health

  31. Duncan DB (1955) Multiple range and multiple “F” test. Biometrics 11:10

    Article  Google Scholar 

  32. Faiz H, Zuberi A, Nazir S, Rauf M, Younus N (2015) Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int J Agric Biol 17(3):568–574

    Article  CAS  Google Scholar 

  33. Swain PS, Rao SB, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr 2(3):134–141. https://doi.org/10.1016/j.aninu.2016.06.003

    Article  Google Scholar 

  34. FAO, SIDA, (1983) Manual of methods in aquatic environment research. Part 9. Analyses of metals and organochlorines in fish. FAO Fish Tech Pap 212:21–33

    Google Scholar 

  35. Dekani L, Johari SA, Joo HS (2019) Comparative toxicity of organic, inorganic and nanoparticulate zinc following dietary exposure to common carp (Cyprinus carpio). Sci Total Environ 656:1191–1198. https://doi.org/10.1016/j.scitotenv.2018.11.474

    Article  CAS  Google Scholar 

  36. Hu CH, Xiao K, Jiao LF, Song J (2014) Effects of zinc oxide supported on zeolite on growth performance, intestinal barrier function and digestive enzyme activities of Nile tilapia. Aquac Nutr 20(5):486–493. https://doi.org/10.1111/anu.12101

    Article  CAS  Google Scholar 

  37. Tan B, Mai K (2001) Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture 192(1):67–84. https://doi.org/10.1016/S0044-8486(00)00435-X

    Article  CAS  Google Scholar 

  38. Shahpar Z, Johari SA (2019) Effects of dietary organic, inorganic, and nanoparticulate zinc on rainbow trout, Oncorhynchus mykiss larvae. Biol Trace Elem Res 190(2):535–540

    Article  CAS  Google Scholar 

  39. Yazhiniprabha M, Gopi N, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, ..., Vaseeharan B (2022) The dietary supplementation of zinc oxide and selenium nanoparticles enhance the immune response in freshwater fish Oreochromis mossambicus against aquatic pathogen Aeromonas hydrophila. J Trace Elem Med Biol 69: 126878.‏ https://doi.org/10.1016/j.jtemb.2021.126878

  40. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):1–20. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  41. Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, ..., Lin JJ (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30(30): 5979-5987.‏ https://doi.org/10.1016/j.biomaterials.2009.07.030

  42. Biller-Takahashi JD, Takahashi LS, Saita MV, Gimbo RY, Urbinati EC (2013) Leukocytes respiratory burst activity as indicator of innate immunity of pacu Piaractus mesopotamicus. Braz J Biol 73:425–429. https://doi.org/10.1590/S1519-69842013000200026

    Article  CAS  Google Scholar 

  43. Sherif AH, Gouda MY, Zommara MA, Abd El-Rahim AH, Mahrous K, Abd-El halim Salama SS, (2021) Inhibitory effect of nano selenium on the recurrence of Aeromonas hydrophila bacteria in Cyprinus carpio. Egypt EJABF 25(3):713–738. https://doi.org/10.21608/EJABF.2021.180901

    Article  Google Scholar 

  44. Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z (2016) A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 144:571–582. https://doi.org/10.1016/j.chemosphere.2015.09.024

    Article  CAS  Google Scholar 

  45. Gharaei A, Khajeh M, Khosravanizadeh A, Mirdar J, Fadai R (2020) Fluctuation of biochemical, immunological, and antioxidant biomarkers in the blood of beluga (Huso huso) under effect of dietary ZnO and chitosan–ZnO NPs. Fish Physiol Biochem 46(2):547–561. https://doi.org/10.1007/s10695-019-00726-2

    Article  CAS  Google Scholar 

  46. Anjugam M, Vaseeharan B, Iswarya A, Gobi N, Divya M, Thangaraj MP, Elumalai P (2018) Effect of β-1, 3 glucan binding protein-based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish Shellfish Immunol 76:247–259. https://doi.org/10.1016/j.fsi.2018.03.012

    Article  CAS  Google Scholar 

  47. Borgia VF, Thatheyus AJ, Murugesan AG, Alexander SCP, Geetha I (2018) Effects of effluent from electroplating industry on the immune response in the freshwater fish, Cyprinus carpio. Fish Shellfish Immunol 79:86–92. https://doi.org/10.1016/j.fsi.2018.05.010

    Article  CAS  Google Scholar 

  48. Luo YH, Chang LW, Lin P (2015) Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. Biomed Res Int 2015:Article 143720. https://doi.org/10.1155/2015/143720

    Article  CAS  Google Scholar 

  49. Lucarelli M, Gatti AM, Savarino G, Quattroni P, Martinelli L, Monari E, Boraschi D (2004) Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur Cytokine Netw 15(4):339–346

    CAS  Google Scholar 

  50. Sherif AH, Al-Sokary ET, Rizk WF, Mahfouz ME (2020) Immune status of Oreochromis niloticus subjected to long-term lead nitrate exposure and a Arthrospira platensis treatment trial. Environ Toxicol Pharmacol 76:103352. https://doi.org/10.1016/j.etap.2020.103352

    Article  CAS  Google Scholar 

  51. Shi L, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zhou XQ (2015) Folic acid deficiency impairs the gill health status associated with the NF-κB, MLCK and Nrf2 signaling pathways in the gills of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 47(1):289–301. https://doi.org/10.1016/j.fsi.2015.09.023

    Article  CAS  Google Scholar 

  52. Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou X Q, ..., Feng L (2017) Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signalling pathway of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 66: 497-523.‏ https://doi.org/10.1016/j.fsi.2017.05.048

  53. Sherif AH, Alsokary ET, Esam HA (2019) Assessment of titanium dioxide nanoparticle as treatment of Aeromonas hydrophila infection in Oreochromis niloticus. J Hellenic Vet Med Soc 70(3):1697–1706. https://doi.org/10.12681/jhvms.21796

    Article  Google Scholar 

  54. Kutyrev I, Cleveland B, Leeds T, Wiens GD (2016) Proinflammatory cytokine and cytokine receptor gene expression kinetics following challenge with Flavobacterium psychrophilum in resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 58:542–553. https://doi.org/10.1016/j.fsi.2016.09.053

    Article  CAS  Google Scholar 

  55. Wang T, Secombes CJ (2013) The cytokine networks of adaptive immunity in fish. Fish Shellfish Immunol 35(6):1703–1718. https://doi.org/10.1016/j.fsi.2013.08.030

    Article  CAS  Google Scholar 

  56. Awad A, Zaglool AW, Ahmed SA, Khalil SR (2019) Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and nano-zinc oxide dietary supplements. Fish Shellfish Immunol 93:336–343. https://doi.org/10.1016/j.fsi.2019.07.067

    Article  CAS  Google Scholar 

  57. Gopal V, Parvathy S, Balasubramanian PR (1997) Effect of heavy metals on the blood protein biochemistry of the fish Cyprinus carpio and its use as a bio-indicator of pollution stress. Environ Monit Assess 48(2):117–124. https://doi.org/10.1023/A:1005767517819

    Article  CAS  Google Scholar 

  58. Soaudy MR, Mohammady EY, Ali MM, Elashry MA, Hassaan MS (2021) Potential effects of dietary ZnO supported on kaolinite (ZnO-K) to improve biological parameters, reproduction indices, lipid profile and antioxidant enzymes activities for broodstock of Nile tilapia (Oreochromis niloticus). Anim Feed Sci Technol 281:115117. https://doi.org/10.1016/j.anifeedsci.2021.115117

    Article  CAS  Google Scholar 

  59. Rocha-Santos C, Bastos FF, Dantas RF, Hauser-Davis RA, Rodrigues LC, Bastos VC, Bastos JC (2018) Glutathione peroxidase and glutathione S-transferase in blood and liver from a hypoxia-tolerant fish under oxygen deprivation. Ecotoxicol Environ Saf 163:604–611

    Article  CAS  Google Scholar 

  60. Vasylkiv OY, Kubrak OI, Storey KB, Lushchak VI (2011) Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pestic Biochem Phys 101(1):1–5. https://doi.org/10.1016/j.pestbp.2011.05.005

    Article  CAS  Google Scholar 

  61. Dehghan G, Rashtbari S, Yekta R, Sheibani N (2019) Synergistic inhibition of catalase activity by food colorants sunset yellow and curcumin: an experimental and MLSD simulation approach. Chem Biol Interact 311:108746. https://doi.org/10.1016/j.cbi.2019.108746

    Article  CAS  Google Scholar 

  62. Wu C, Zhang W, Mai K, Xu W, Zhong X (2011) Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai. Comp Biochem Physiol Part C Toxicol Pharmacol 154(1):1–6. https://doi.org/10.1016/j.cbpc.2011.03.003

    Article  CAS  Google Scholar 

  63. Zhang R, Wen C, Chen Y, Liu W, Jiang Y, Zhou Y (2020) Zinc-bearing palygorskite improves the intestinal development, antioxidant capability, cytokines expressions, and microflora in blunt snout bream (Megalobrama amblycephala). Aquac Rep 16:100269

    Article  Google Scholar 

  64. Jiao L, Lin F, Cao S, Wang C, Wu H, Shu M, Hu C (2017) Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc-loaded montmorillonite. J Anim Sci Biotechnol 8(1):1–7. https://doi.org/10.1186/s40104-017-0156-6

    Article  CAS  Google Scholar 

  65. Chesters JK, O'Dell BL, Sunde RA (1997) Handbook of nutritionally essential mineral elements. Marcel Dekker Inc., New York, 185–230. https://doi.org/10.1201/9781482273106

  66. Magnadottir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20(2):137–151

    Article  CAS  Google Scholar 

  67. Saurabh S, Sahoo PK (2008) Lysozyme: an important defense molecule of fish innate immune system. Aquac Res 39(3):223–239. https://doi.org/10.1111/j.1365-2109.2007.01883.x

    Article  CAS  Google Scholar 

  68. Kumar N, Krishnani KK, Singh NP (2018) Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biol Trace Elem Res 186(1):267–278. https://doi.org/10.1007/s12011-018-1285-2

    Article  CAS  Google Scholar 

  69. Thirunavukkarasu M, Periyakali SB, Subramanian R, Perumal S (2019) Influence of two different dietary zinc sources in freshwater prawn Macrobrachium rosenbergii post larvae. J Oceanol Limnol 37(1):290–299. https://doi.org/10.1007/s00343-018-7253-z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H. Sherif.

Ethics declarations

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherif, A.H., Abdelsalam, M., Ali, N.G. et al. Zinc Oxide Nanoparticles Boost the Immune Responses in Oreochromis niloticus and Improve Disease Resistance to Aeromonas hydrophila Infection. Biol Trace Elem Res 201, 927–936 (2023). https://doi.org/10.1007/s12011-022-03183-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03183-w

Keywords

Navigation