Skip to main content
Log in

Disordered Expression of Tight Junction Proteins Is Involved in the Mo-induced Intestinal Microenvironment Dysbiosis in Sheep

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To evaluate the molybdenum (Mo)-induced changes of intestinal morphology and the relationship of intestinal tight junction (TJ) proteins expression and intestinal barrier function, a total of 20 healthy sheep were randomly divided into five groups of four: 0, 5, 10, 20, and 50 mg/kg BW/day Na2MoO4·2H2O were administrated in five groups named control group, Mo 5 group, Mo 10 group, Mo 20 group, and Mo 50 group, respectively. After 28 days of Mo treatment, the duodenum, the jejunum, and the ileum tissue were collected. The histopathology and the developmental parameters were evaluated by hematoxylin–eosin staining. The intestinal epithelial cell DNA damage was detected by TdT-mediated dUTP nick end labeling assay. The intestinal glycoprotein and the goblet cells were analyzed by Alcian Blue-Periodic Acid-Schiff (AB-PAS) staining and PAS staining, respectively. TJ proteins were determined by immunofluorescence technology. Results showed that excessive Mo significantly decreased the small intestinal villus height (VH), crypt depth (CD), VH/CD, and mucosal thickness (P < 0.05 or P < 0.01) while induced the damage of DNA in small intestinal epithelial cells. Moreover, excessive Mo injured intestinal barrier function by decreasing the percent of glycoprotein distribution area (P < 0.05) and the relative density of intestinal goblet cells (P < 0.05). Mo treatment induced decreased (P < 0.01) expression of Zonula Occludens-1, Occludin, and Claudin-1. In conclusion, excessive Mo interfered with the expression of TJ proteins, inhibited intestinal epithelial development, and further aggravated the intestinal barrier function damage, leading to disturbing the small intestinal microenvironment balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Ber Y, García-Lopez S, Gargallo-Puyuelo CJ, Gomollón F (2021) Small and large intestine (II): Inflammatory bowel disease, short bowel syndrome, and malignant tumors of the digestive tract. Nutrients 13(7):2325. https://doi.org/10.3390/nu13072325

    Article  CAS  Google Scholar 

  2. Volk N, Lacy B (2017) Anatomy and physiology of the small bowel. Gastrointest Endosc Clin N Am 27(1):1–13. https://doi.org/10.1016/j.giec.2016.08.001

    Article  Google Scholar 

  3. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GM, Schütte A, van der Post S, Svensson F, Rodríguez-Piñeiro AM, Nyström EE, Wising C, Johansson ME, Hansson GC (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20. https://doi.org/10.1111/imr.12182

    Article  CAS  Google Scholar 

  4. Taipaleenmäki E, Christensen G, Brodszkij E, Mouritzen SA, Gal N, Madsen S, Hedemann MS, Knudsen TA, Jensen HM, Christiansen SL, Sparsø FV, Städler B (2020) Mucopenetrating polymer—lipid hybrid nanovesicles as subunits in alginate beads as an oral formulation. Journal of controlled release: official journal of the Controlled Release Society 322:470–485. https://doi.org/10.1016/j.jconrel.2020.03.047

    Article  CAS  Google Scholar 

  5. Yang S, Yu M (2021) Role of goblet cells in intestinal barrier and mucosal immunity. J Inflamm Res 14:3171–3183. https://doi.org/10.2147/JIR.S318327

    Article  Google Scholar 

  6. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12(5):319–330. https://doi.org/10.1007/s11894-010-0131-2

    Article  Google Scholar 

  7. You XY, Zhang HY, Han X, Wang F, Zhuang PW, Zhang YJ (2021) Intestinal mucosal barrier is regulated by intestinal tract neuro-immune interplay. Front Pharmacol 12:659716. https://doi.org/10.3389/fphar.2021.659716

    Article  CAS  Google Scholar 

  8. Johansson ME, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, Ghishan FK, Carvalho FA, Gewirtz AT, Sjövall H, Hansson GC (2014) Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63(2):281–291. https://doi.org/10.1136/gutjnl-2012-303207

    Article  CAS  Google Scholar 

  9. Mehandru S, Colombel JF (2021) The intestinal barrier, an arbitrator turned provocateur in IBD. Nat Rev Gastroenterol Hepatol 18(2):83–84. https://doi.org/10.1038/s41575-020-00399-w

    Article  Google Scholar 

  10. Montoro-Huguet MA, Belloc B, Domínguez-Cajal M (2021) Small and large intestine (I): malabsorption of nutrients. Nutrients 13(4):1254. https://doi.org/10.3390/nu13041254

    Article  CAS  Google Scholar 

  11. Zhang Y, Zhou S, Deng F, Chen X, Wang X, Wang Y, Zhang H, Dai W, He B, Zhang Q, Wang X (2018) The function and mechanism of preactivated thiomers in triggering epithelial tight junctions opening. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e V 133:188–199. https://doi.org/10.1016/j.ejpb.2018.10.014

    Article  CAS  Google Scholar 

  12. Günzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569. https://doi.org/10.1152/physrev.00019.2012

    Article  CAS  Google Scholar 

  13. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 24(6):503–512. https://doi.org/10.1111/j.1365-2982.2012.01921.x

    Article  CAS  Google Scholar 

  14. Slifer ZM, Hernandez L, Pridgen TA, Carlson AR, Messenger KM, Madan J, Krishnan BR, Laumas S, Blikslager AT (2021) Larazotide acetate induces recovery of ischemia-injured porcine jejunum via repair of tight junctions. PLoS ONE 16(4):e0250165. https://doi.org/10.1371/journal.pone.0250165

    Article  CAS  Google Scholar 

  15. Farkas AE, Hilgarth RS, Capaldo CT, Gerner-Smidt C, Powell DR, Vertino PM, Koval M, Parkos CA, Nusrat A (2015) HNF4α regulates claudin-7 protein expression during intestinal epithelial differentiation. Am J Pathol 185(8):2206–2218. https://doi.org/10.1016/j.ajpath.2015.04.023

    Article  CAS  Google Scholar 

  16. Farkas AE, Capaldo CT, Nusrat A (2012) Regulation of epithelial proliferation by tight junction proteins. Ann N Y Acad Sci 1258:115–124. https://doi.org/10.1111/j.1749-6632.2012.06556.x

    Article  CAS  Google Scholar 

  17. Jiang Y, Song J, Xu Y, Liu C, Qian W, Bai T, Hou X (2021) Piezo1 regulates intestinal epithelial function by affecting the tight junction protein claudin-1 via the ROCK pathway. Life Sci 275:119254. https://doi.org/10.1016/j.lfs.2021.119254

    Article  CAS  Google Scholar 

  18. Arrieta MC, Madsen K, Doyle J, Meddings J (2009) Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58(1):41–48. https://doi.org/10.1136/gut.2008.150888

    Article  CAS  Google Scholar 

  19. Buckley A, Turner JR (2018) Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harbor perspectives in biology 10(1):a029314. https://doi.org/10.1101/cshperspect.a029314

    Article  Google Scholar 

  20. Suttle NF (2012) Copper imbalances in ruminants and humans: unexpected common ground. Advances in nutrition Bethesda Md 3(5):666–674. https://doi.org/10.3945/an.112.002220

    Article  CAS  Google Scholar 

  21. Mills CF (1960) Comparative studies of copper, molybdenum and sulphur metabolism in the ruminant and the rat. Proc Nutr Soc 19:162–169. https://doi.org/10.1079/pns19600042

    Article  CAS  Google Scholar 

  22. Zhang C, Hu Z, Hu R, Pi S, Wei Z, Wang C, Yang F, Xing C, Nie G, Hu G (2021) New insights into crosstalk between pyroptosis and autophagy co-induced by molybdenum and cadmium in duck renal tubular epithelial cells. J Hazard Mater 416:126138. https://doi.org/10.1016/j.jhazmat.2021.126138

    Article  CAS  Google Scholar 

  23. Kelleher CA, Ivan M, Lamand M, Mason J (1983) The absorption of labelled molybdenum compounds in sheep fitted with re-entrant cannulae in the ascending duodenum. J Comp Pathol 93(1):83–92. https://doi.org/10.1016/0021-9975(83)90045-2

    Article  CAS  Google Scholar 

  24. Kessler KL, Olson KC, Wright CL, Austin KJ, Johnson PS, Cammack KM (2012) Effects of supplemental molybdenum on animal performance, liver copper concentrations, ruminal hydrogen sulfide concentrations, and the appearance of sulfur and molybdenum toxicity in steers receiving fiber-based diets. J Anim Sci 90(13):5005–5012. https://doi.org/10.2527/jas.2011-4453

    Article  CAS  Google Scholar 

  25. Thorndyke MP, Guimaraes O, Kistner MJ, Wagner JJ, Engle TE (2021) Influence of molybdenum in drinking water or feed on copper metabolism in cattle—a review. Animals: an open access journal from MDPI 11(7):2083. https://doi.org/10.3390/ani11072083

    Article  Google Scholar 

  26. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis V, Azimonti G, Bastos ML, Christensen H, Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Flachowsky G, Gropp J, Mantovani A (2019) Safety and efficacy of a molybdenum compound (E7) sodium molybdate dihydrate as feed additive for sheep based on a dossier submitted by Trouw Nutrition International B.V. EFSA journal European Food Safety Authority 17(2):e05606. https://doi.org/10.2903/j.efsa.2019.5606

    Article  CAS  Google Scholar 

  27. Ward JD, Spears JW (1999) The effects of low-copper diets with or without supplemental molybdenum on specific immune responses of stressed cattle. J Anim Sci 77(1):230–237. https://doi.org/10.2527/1999.771230x

    Article  CAS  Google Scholar 

  28. Zhao WP, Wang HW, Liu J, Tan PP, Luo XL, Zhu SQ, Chen XL, Zhou BH (2018) Positive PCNA and Ki-67 Expression in the testis correlates with spermatogenesis dysfunction in fluoride-treated rats. Biol Trace Elem Res 186(2):489–497. https://doi.org/10.1007/s12011-018-1338-6

    Article  CAS  Google Scholar 

  29. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14(10):667–685. https://doi.org/10.1038/nri3738

    Article  CAS  Google Scholar 

  30. Bhattacharya PT, Misra SR, Hussain M (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica 2016:5464373. https://doi.org/10.1155/2016/5464373

    Article  CAS  Google Scholar 

  31. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1–2):147–163. https://doi.org/10.1016/s0300-483x(03)00159-8

    Article  CAS  Google Scholar 

  32. Hille R (1999) Molybdenum enzymes Essays in biochemistry 34:125–137. https://doi.org/10.1042/bse0340125

    Article  CAS  Google Scholar 

  33. Mendel RR (2009) Cell biology of molybdenum. BioFactors (Oxford, England) 35(5):429–434. https://doi.org/10.1002/biof.55

    Article  CAS  Google Scholar 

  34. Anup R, Susama P, Balasubramanian KA (2000) Role of xanthine oxidase in small bowel mucosal dysfunction after surgical stress. Br J Surg 87(8):1094–1101. https://doi.org/10.1046/j.1365-2168.2000.01469.x

    Article  CAS  Google Scholar 

  35. Tweeddale HJ, Kondo M, Gebicki JM (2007) Proteins protect lipid membranes from oxidation by thiyl radicals. Arch Biochem Biophys 459(2):151–158. https://doi.org/10.1016/j.abb.2007.01.016

    Article  CAS  Google Scholar 

  36. Steck N, Hoffmann M, Sava IG, Kim SC, Hahne H, Tonkonogy SL, Mair K, Krueger D, Pruteanu M, Shanahan F, Vogelmann R, Schemann M, Kuster B, Sartor RB, Haller D (2011) Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 141(3):959–971. https://doi.org/10.1053/j.gastro.2011.05.035

    Article  CAS  Google Scholar 

  37. Miyoshi J, Takai Y (2005) Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 57(6):815–855. https://doi.org/10.1016/j.addr.2005.01.008

    Article  CAS  Google Scholar 

  38. Fukui H (2021) Leaky gut and gut-liver axis in liver cirrhosis: clinical studies update. Gut and liver 15(5):666–676. https://doi.org/10.5009/gnl20032

    Article  CAS  Google Scholar 

  39. Su L, Nalle SC, Shen L, Turner ES, Singh G, Breskin LA, Khramtsova EA, Khramtsova G, Tsai PY, Fu YX, Abraham C, Turner JR (2013) TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 145(2):407–415. https://doi.org/10.1053/j.gastro.2013.04.011

    Article  CAS  Google Scholar 

  40. Meddings JB, Jarand J, Urbanski SJ, Hardin J, Gall DG (1999) Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am J Physiol 276(4):G951–G957. https://doi.org/10.1152/ajpgi.1999.276.4.G951

    Article  CAS  Google Scholar 

  41. Fink MP, Antonsson JB, Wang HL, Rothschild HR (1991) Increased intestinal permeability in endotoxic pigs. Mesenteric hypoperfusion as an etiologic factor. Archives of surgery Chicago Ill 1960 126(2):211–218. https://doi.org/10.1001/archsurg.1991.01410260101014

    Article  CAS  Google Scholar 

  42. Natividad JM, Huang X, Slack E, Jury J, Sanz Y, David C, Denou E, Yang P, Murray J, McCoy KD, Verdú EF (2009) Host responses to intestinal microbial antigens in gluten-sensitive mice. PLoS ONE 4(7):e6472. https://doi.org/10.1371/journal.pone.0006472

    Article  CAS  Google Scholar 

  43. Foitzik T, Fernández-del Castillo C, Ferraro MJ, Mithöfer K, Rattner DW, Warshaw AL (1995) Pathogenesis and prevention of early pancreatic infection in experimental acute necrotizing pancreatitis. Ann Surg 222(2):179–185. https://doi.org/10.1097/00000658-199508000-00010

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Nature Science Foundation of China (grant no. 31972752).

Author information

Authors and Affiliations

Authors

Contributions

CZ: Performing the experiments, writing the initial draft, preparation of the data presented. JZ, Supervision. MM, Performing the experiments. ZZ, Critical review. FL*, Acquisition of the financial support for the project leading to this publication. HW*: Ideas, creation of models, funding acquisition.

Corresponding authors

Correspondence to Feng-jun Liu or Hong-wei Wang.

Ethics declarations

Ethics Approval

The experimental design was approved by the Institutional Animal Care Welfare Committee of Henan University of Science and Technology (HAUST-EAW-2021-R00409, Henan, China).

Consent to Participate

Written informed consent for publication was obtained from all participants.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Cy., Zhao, J., Mao, Mx. et al. Disordered Expression of Tight Junction Proteins Is Involved in the Mo-induced Intestinal Microenvironment Dysbiosis in Sheep. Biol Trace Elem Res 201, 204–214 (2023). https://doi.org/10.1007/s12011-022-03155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03155-0

Keywords

Navigation